Integrated Silviculture Strategy for the Merritt TSA

Situation Analysis

Version 1.3
May 20, 2016
Project 419-36

Prepared by:
Forsite Consultants Ltd.
330 – 42nd Street SW
PO Box 2079
Salmon Arm, BC V1E 4R1
250.832.3366

Prepared for:
BC Ministry of Forest, Lands and Natural Resource Operations
Resource Practices Branch
PO Box 9513 Stn Prov Govt
Victoria, BC V8W 9C2
Executive Summary

In support of government objectives to mitigate forest health impacts on mid-term timber supply, this Integrated Silviculture Strategy project aims to facilitate a respectful and collaborative planning process that supports the delivery of defined stewardship outcomes - which, in turn, improves business certainty for licensees operating within the Merritt Timber Supply Area (TSA).

The Situation Analysis is the first of seven documents to make up the Integrated Silviculture Strategy. It describes the status of the resources within the Merritt TSA and the issues that affect their sustainable use.

The Merritt TSA is home or traditional territory to four First Nations including: Nlaka’pamux Nation, Okanagan Nation, Secwepemc Nation, Sto:Lo Nation. The majority of timber harvested within Merritt TSA is through replaceable forest licences held by: Ardew Wood Products, Aspen Planers, Tolko, Weyerhaeuser, Stuwix Resources, Lower Nicola and BC Timber Sales.

The First Nations, licensees, interest groups, and public stakeholders will play a vital role ensuring that all relevant and recent information is compiled for use in the planned analyses. In particular, we welcome First Nations’ active participation to provide traditional knowledge on ecosystems, wildlife and lands and to help develop more robust and appropriate management scenarios that will be examined in future phases of this project. The Merritt Natural Resource is in the process of engaging with First Nations on this project.

While a timber supply review accounts for many factors in determining the AAC, exploring alternative land use options are typically outside its scope. In recent years, government agencies and licensees operating within the Merritt TSA have developed an array of strategies and plans, including:

a. Provincial timber management goals and objectives
b. Designations and objectives set by government
c. BC Mountain Pine Beetle model (BCMPB)
d. Mid-Term Timber Supply Action Plan
e. Multiple Resource Value Assessment
f. Provincial Stewardship/Timber Harvesting Land Base Stabilization
g. Forest Health Strategy
h. Silviculture Strategies
i. Grassland Conversion and Ecosystem Restoration
j. Cumulative Effects Framework
k. Nicola-Similkameen Innovative Forestry Society
l. Nicola-Thompson Fraser Sustainable Forest Management Plan
m. Recovery planning for species at risk

The MPB infestation in the Merritt TSA increased dramatically in 2004, peaked in 2007, and has since declined sharply. Presently, only about 2.5 M m³ of dead pine remain on the THLB; dispersed throughout stands that include significant volumes of live timber. According to the BCMPBv12 model projections, approximately 68% of the dead pine in the Merritt TSA THLB is in stands where the dead pine component is 50% or less of the total volume of the stand. This suggests that the salvage period is coming to an end.

Increases to the allowable annual cut (AAC) have been implemented since 1999 to salvage timber damaged by wildfire and stands impacted by insects - primarily MPB. The ongoing timber supply review is expected to significantly reduce the current AAC of 2.4 M m³/year to a level that is closer to the AAC prior to these uplifts.
MPB-killed pine stands that were not salvaged in time will require assessments to determine whether to rehabilitate or leave them to regenerate naturally - since some stands may have sufficient advanced regeneration.

MPB is not the only forest health impact to these forests. Significant tree mortality has been observed with, spruce beetle attacking live spruce trees, western spruce budworm defoliating Douglas-fir stands, decline of older balsam trees and the ever-increasing risk of fire as the dead wood dries.

Silviculture strategies completed to date for the Merritt TSA have focused on achieving timber quantity objectives and have not substantially addressed timber quality. Opportunities exist to explore product flow objectives to address log quality from future stands.

Specific changes in seasonal weather have been modelled and are available by region. Climate change adaptation strategies are being developed for the Province but specific silvicultural treatments for the Merritt TSA are not available at this time.

Other key values identified in this document include parks, biodiversity, ungulate management, species at risk, archaeological and First Nations cultural use, watershed health, visual quality objectives, recreation, guide outfitters and trappers, and ranching. Other specific issues considered are road density and access, and herbicide use.
Table of Contents

Executive Summary.. i
Table of Contents.. ii
List of Figures ... iii
List of Tables .. v
List of Acronyms ... vi
Acknowledgements .. vi
Revision History ... ii

1 Introduction .. 1
 1.1 Integrated Silviculture Strategy Objectives ... 1
 1.2 Context .. 2
 1.3 Project Area ... 2

2 Summary of Current Plans and Strategies ... 5
 2.1 Provincial Timber Management Goals and Objectives ... 5
 2.1.1 Timber volume flow over time .. 5
 2.1.2 Timber quality .. 6
 2.1.3 Tree Species Composition ... 6
 2.1.4 Stand productivity and growing stock .. 6
 2.1.5 Inherent site capacity ... 7
 2.2 Designations and objectives set by government ... 7
 2.3 BC Mountain Pine Beetle model (BCMPB) .. 8
 2.4 Southern Interior Beetle Action Coalition ... 10
 2.5 Mid-Term Timber Supply Action Plan .. 10
 2.6 Multiple Resource Value Assessment .. 11
 2.7 Provincial Stewardship/Timber Harvesting Land Base Stabilization 13
 2.8 Forest Health Strategy .. 13
 2.9 Partition Implementation and Stewardship Guiding Principles 14
 2.10 Silviculture Strategies ... 14
 2.10.1 Type 1 Silviculture Strategy ... 14
 2.10.2 Type 2 Silviculture Strategy ... 15
 2.10.3 Forests for Tomorrow .. 15
 2.11 Grassland Conversion and Ecosystem Restoration ... 16
 2.12 Cumulative Effects Framework ... 16
 2.13 Nicola-Similkameen Innovative Forest Society .. 17
 2.14 Nicola Thompson Fraser Sustainable Forest Management Plan 18

3 First Nations and Cultural Heritage .. 19

4 Forest Licensees ... 20
 4.1 Replaceable Forest Licensees ... 20
 4.2 Non-Replaceable Forest Licensees ... 20
 4.3 BC Timber Sales ... 20
 4.4 Area-Based Tenures ... 20

5 Timber Supply .. 22
 5.1 Resource Inventories .. 22
 5.2 Forest Inventory .. 22
 5.3 Predictive Ecosystem Mapping ... 23
 5.4 Allowable Annual Cut .. 24
 5.4.1 Historic AAC .. 24
 5.4.2 2015 Timber Supply Review and Future AAC ... 24
 5.4.3 Current AAC .. 26
 5.4.4 AAC Determinations of Innovative Forest Practices Agreement 27
 5.4.5 Harvest Performance ... 27
 5.4.6 Existing License Commitments .. 27
 5.5 MPB Impacts .. 30
 5.5.1 Beetle Killed Pine and “Shelf Life” ... 30
5.5.2 MPB Attack in Young Stands ... 31
5.5.3 Regeneration in Unsalvaged MPB-attacked stands ... 31
5.5.4 Future Dependency on Non-pine Leading Stands .. 31
5.5.5 MPB Effect on Age Class Distribution .. 32
5.6 Non-MPB Forest Health Factors .. 33
5.6.1 Spruce Bark Beetle ... 34
5.6.2 Balsam Bark Beetle ... 34
5.6.3 Western Spruce Budworm .. 34
5.6.4 Fire ... 34
5.7 Protecting Secondary Structure ... 36
5.8 Minimum Harvestable Volume .. 36
5.9 Dry-Belt Fir ... 37
5.10 Harvest Capacity ... 37
5.11 Haul Distances ... 37
5.12 Site Quality ... 38

6 Timber Quality ... 38
6.1 Small Diameter Pine .. 38
6.2 Grade 4 (Lumber Reject) ... 38

7 Species Habitat ... 39
7.1 Species At Risk .. 39
7.1.1 Recovery Planning ... 43
7.2 Ungulate Winter Range ... 44
7.3 Wildlife Habitat Areas ... 46
7.4 Identified Wildlife Notices .. 46

8 Biodiversity ... 47
8.1 Landscape-level Retention .. 47
8.2 Stand-Level Retention ... 47
8.3 Riparian Management ... 48
8.4 Landscape Connectivity ... 49
8.5 Management for Coarse Woody Debris ... 49

9 Climate Change Adaptation ... 50

10 Other Development .. 52
10.1 Mines ... 52
10.2 Pipelines .. 52
10.3 Hydro-Electric Power ... 52
10.4 Wind Power ... 52
10.5 Communication Sites ... 52

11 Other Key Values and Issues ... 53
11.1 Parks, Protected Areas and Ecological Reserves ... 53
11.2 Watershed Health .. 53
11.2.1 Community Watersheds .. 54
11.2.2 Fisheries Sensitive Watersheds ... 54
11.2.3 Temperature Sensitive Streams ... 55
11.3 Archaeological Resources, First Nations Cultural Use and Sensitive Sites 55
11.4 Visual Quality Objectives .. 56
11.5 Recreation ... 58
11.6 Guide Outfitters and Trappers ... 58
11.7 Ranching ... 60
11.8 Road Density and Access .. 62
11.9 Herbicide Use ... 62

12 References ... 63
List of Figures

Figure 1 Overview Map of the Merritt TSA .. 3
Figure 2 Species Composition of the Crown Forested Landbase 4
Figure 3 Species Composition of the Timber Available for Harvest 4
Figure 4 Annual MPB Kill Levels on the Merritt TSA THLB 8
Figure 5 Cumulative MPB Kill Levels on the Merritt TSA THLB 9
Figure 6 Distribution of THLB pine volume using forest inventory data and shelf life assumptions .. 9
Figure 7 MRVA Performance and Trends - Merritt TSA ... 13
Figure 8 Inventory reference year for the Merritt Timber Supply Area 23
Figure 9 Base case forecast for the Merritt TSA 2015 Timber Supply Review 25
Figure 10 First Alternative harvest forecast – initial harvest level 2.0 M m³/year for five years .. 26
Figure 11 Second alternative harvest forecast – initial harvest level 1.5 M m³/year for five years .. 26
Figure 12 Licensee Operating Areas for the Merritt Timber Supply Area 29
Figure 13 Shelf-life by grade proportion and merchantable net volume 30
Figure 14 Age Class of the Merritt TSA in 2014 .. 33
Figure 15 Approved Ungulate Winter Ranges by Species in the Merritt TSA 45
Figure 16 Application of GAR s.15 and the FPPR s.53 to three different stream networks in three similar sized watersheds (From Reese-Hanson et al 2012) ... 55
Figure 17 VQO polygons established in the Merritt TSA ... 57
Figure 18 Trapping and Guide Outfitters in the Merritt TSA 59
Figure 19 Range Tenures in the Merritt TSA ... 61

List of Tables

Table 1 Priority Ranking of Forest Health Pests in the Merritt TSA 14
Table 2 Forecasts For Tomorrow Activities from 2003 to 2013 in the Merritt TSA 15
Table 3 Forecast Forest for Tomorrow Activities from 2014 to 2018 15
Table 4 Merritt TSA Resource Inventories .. 22
Table 5 AAC apportionment as of September, 2015 ... 24
Table 6 Conifer Harvest Volume and percent harvest by species 27
Table 7 Annual license commitments in the Merritt TSA ... 28
Table 8 Impacted Hectares from Provincial Aerial Overview Survey (PAOS) in the Merritt TSA .. 34
Table 9 Predicted Natural Recovery of Pine-Leading Stands by BEC 36
Table 10 Minimum Harvest Criteria .. 37
Table 11 Volume of small wood harvested between 2005 and 2013 38
Table 12 Historic amounts of Grade 4 credit against cut control 38
Table 13 Species at risk for the Merritt Forest District: Vertebrate Animals 39
Table 14 Species at risk for the Merritt TSA: Invertebrate Animals 40
Table 15 Species at risk for the Merritt TSA: Vascular Plants 41
Table 16 Species at risk for the Merritt TSA: Non-Vascular Plants and Lichens 42
Table 17 Wildlife Habitat Areas in the Merritt TSA ... 46
Table 18 Minimum wildlife tree retention percentages ... 48
Table 19 Summary of Climate Change for Thompson/Okanagan Region in the 2050s (Pacific Climate Impacts Consortium – PlanAdapt) ... 50
Table 20 Community Watersheds in the Merritt TSA ... 54
Table 21 Proposed Fisheries Sensitive Watershed in the Merritt TSA 55
Table 22 Visual Quality Objective Summary for the Merritt TSA 56
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Allowable Annual Cut</td>
</tr>
<tr>
<td>BCMPB</td>
<td>BC Mountain Pine Beetle model</td>
</tr>
<tr>
<td>BEC</td>
<td>Biogeoclimatic Ecosystem Classification</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>Dbh</td>
<td>Diameter at Breast Height</td>
</tr>
<tr>
<td>FFT</td>
<td>Forests for Tomorrow</td>
</tr>
<tr>
<td>FLNRO</td>
<td>Ministry of Forests, Lands and Natural Resource Operations</td>
</tr>
<tr>
<td>FREP</td>
<td>Forest and Range Evaluation Program</td>
</tr>
<tr>
<td>GAR</td>
<td>Government Action Regulation</td>
</tr>
<tr>
<td>IFPA</td>
<td>Innovative Forest Practices Agreement</td>
</tr>
<tr>
<td>ISS</td>
<td>Integrated Silviculture Strategy</td>
</tr>
<tr>
<td>MPB</td>
<td>Mountain Pine Beetle</td>
</tr>
<tr>
<td>MRVA</td>
<td>Multiple Resource Value Assessment</td>
</tr>
<tr>
<td>NSIFS</td>
<td>Nicola-Similkameen Innovative Forest Society</td>
</tr>
<tr>
<td>OGMA</td>
<td>Old Growth Management Area</td>
</tr>
<tr>
<td>RESULTS</td>
<td>Reporting Silviculture Updates and Land status Tracking System</td>
</tr>
<tr>
<td>SFM</td>
<td>Sustainable Forest Management</td>
</tr>
<tr>
<td>THLB</td>
<td>Timber Harvesting Land Base</td>
</tr>
<tr>
<td>TSA</td>
<td>Timber Supply Area</td>
</tr>
<tr>
<td>TSR</td>
<td>Timber Supply Review</td>
</tr>
<tr>
<td>UWR</td>
<td>Ungulate Winter Range</td>
</tr>
<tr>
<td>VQO</td>
<td>Visual Quality Objective</td>
</tr>
<tr>
<td>VRIMS</td>
<td>Vegetation Resource Inventory Management System</td>
</tr>
<tr>
<td>WHA</td>
<td>Wildlife Habitat Area</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors acknowledge and thank the following individuals who contributed in the completion of this document:

- Alan Powelson, FLNRO (Victoria)
- Andrew Snetsinger, FLNRO (Merritt)
- Barry Snowdon, FLNRO (Victoria)
- Bruce Walter, FLNRO (Merritt)
- Bryce Bancroft, Symmetree (Victoria)
- Cam Brown, Forsite (Salmon Arm)
- Chris Walder, FLNRO (Merritt)
- Glenn Thiem, NSIFS (Salmon Arm)
- Haojing Xie, Forsite (Salmon Arm)
- Jamie Skinner, Tolko (Hefley)
- Jason Carmichael, Weyerhaeuser (Princeton)
- Jeremy Hachey, Forsite (Salmon Arm)
- Jim Thrower, Sophostats Data Services (Kamloops)
- John Surgenor, FLNRO (Kamloops)
- Kat Gunion, Forsite (Salmon Arm)
- Kelly Osbourne, FLNRO (Victoria)
- Mei-Ching Tsoi, Bowhaus (Victoria)
- Patrick Bryant, Forsite (Salmon Arm)
- Paul Rehsler, FLNRO (Victoria)
- Randy Spyksma, Forsite (Salmon Arm)
- Rob Kennett, Forsite (Salmon Arm)
- Shelley Desautels, Forsite (Salmon Arm)
- Stephen Smyrl, Forsite (Salmon Arm)
- Susan Zedel, FLNRO (Victoria)
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Notes/Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Nov 25, 2015</td>
<td>First version distributed for FLNRO review and comment.</td>
</tr>
<tr>
<td>1.1</td>
<td>Dec 11, 2015</td>
<td>Minor edits throughout the document with more significant changes to the Executive Summary</td>
</tr>
<tr>
<td>1.2</td>
<td>Jan & Feb, 2016</td>
<td>Incorporated comments received, including:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• reference to harvest priorities document (partition guidelines),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• reference to FREP extension note #33 (rehabilitation of temporary roads) in Section 11.8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• removal of “green” when referring to equitable access to timber in Section 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Various other edits in response to comments from Bruce Walter (both First Nations related and other).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added SIBAC section</td>
</tr>
<tr>
<td>1.3</td>
<td>May, 2016</td>
<td>Incorporated comments received from John Surgenor related to wildlife and biodiversity. Many minor edits made. Major edits include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adding section on species recovery planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added reference to Vision for BCs forests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added reference to cut control flexibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated WHA text and statistics to reflect newly approved Williamson’s Sapsucker WHAs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added reference to coarse/fine belter approaches to biodiversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expanded section on cumulative effects based on information in the report “Cumulative Effects Assessment for the Merritt Operational Trial”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added section on PEM and its possible use for silviculture planning/retention strategy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text edited to reflect the March 30, 2016 AAC determination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Included statement in the Executive Summary that First Nation engagement is in progress.</td>
</tr>
</tbody>
</table>
1 Introduction

The British Columbia Ministry of Forests, Lands and Natural Resource Operations (FLNRO) have initiated an Integrated Silviculture Strategy (ISS) for the Merritt Timber Supply Area (TSA). The ISS is an evolving planning process that aims to provide context for management decisions necessary to achieve forest level objectives. It integrates other planning processes that have historically been separate or disjointed, such as:

- Wildfire Management Planning
- Forest Health
- Wildlife Reserve Location Planning
- Biodiversity Habitat Planning
- Cumulative Effects
- Silviculture Strategies

Aligning these plans and strategies within a common process will focus landbase investments, improve planning outcomes and enhance communications with stakeholders and First Nations. This alignment will result in increased efficiency and effectiveness of stewardship planning relative to the status quo.

1.1 Integrated Silviculture Strategy Objectives

In support of government objectives to mitigate forest health impacts on mid-term timber supply, this ISS project aims to:

Facilitate a respectful and collaborative planning process that supports the delivery of defined stewardship outcomes - which in turn improves business certainty for licensees operating within the Merritt Timber Supply Area.

This improved certainty will be achieved through the creation of:

1. A common understanding among participants of the goals, values, issues, and challenges facing the Merritt TSA.
2. A well designed Landscape Reserve Strategy that realigns existing land-use designations and constraints to increase or minimize impacts to the timber harvesting land base (THLB) while addressing as many stewardship issues as possible - including First Nation’s interests. This will ultimately help identify areas of the landbase that are suitable for harvesting by licensees.
3. A Silviculture Strategy that provides clear direction on how to achieve improved timber and habitat outcomes in the future through investments in silviculture.
4. A coordinated Harvest Strategy that identifies approaches to harvest scheduling aimed at addressing common interests (e.g., MPB salvage, landscape level fuel breaks, etc.).
5. A plan for monitoring and evaluating progress and effectiveness towards meeting key goals and objectives that support future management decisions in the Merritt TSA.

These objectives are meant to align with Provincial Timber Management Goals and Objectives (FLNRO 2014), the Chief Forester’s Provincial Stewardship Optimization/Timber Harvesting Land Base (THLB) Stabilization Project (FLNRO 2015).
1.2 Context

The situational analysis is the first of seven documents developed through the ISS process, and aims to provide brief summaries of the current situation for a very wide range of forest resource values and issues of concern that pertain to the Merritt TSA. Ultimately this reference is not expected to provide answers but rather invite questions and stimulate ideas for the next phases of the ISS project.

In some cases the authors have extracted or paraphrased sections from existing material and referenced the appropriate sources for the reader to explore further. This list of topics was limited to those being considered - at this time - for the project as other topics may be currently outside of the project scope.

In brief, the seven documents developed through the ISS process are:

1. Situation Analysis – describes in general terms the current situation for the Merritt TSA.
2. Integrated Strategies - describes the development of the overall (preferred) strategy to be explored through forest-level modelling. Tactics are grouped into three broad categories:
 a. Landscape-Level Reserve Tactics – review and analyze existing and proposed management zonation and develop strategy options that provide for the sustainable management of non-timber values.
 b. Landscape-Level Harvest Tactics – review and analyze current and planned timber harvesting plans, infrastructure, and capabilities in the context of the distribution of MPB-killed pine salvage opportunities and the landscape reserve strategy. This must consider the current salvage period and the transition into the mid-term timber supply.
 c. Silviculture Tactics –provides treatment options, associated targets, timeframes and benefits to minimize the impact of the MPB infestation over the mid-term timber supply.
3. Data Package - describes the information that is material to the analysis including the model used, data inputs and assumptions.
5. Tactical Plan – direction for the implementation of the preferred scenario.
6. Final Report – summary of all project work completed.
7. Monitoring Plan – direction on monitoring the implementation of the ISS; establishing a list appropriate performance indicators, developing monitoring responsibilities and timeframe and a reporting format and schedule.

1.3 Project Area

The Merritt TSA is situated in south-central BC (Figure 1) and is approximately 1.13 M hectares in size. It is within the Thompson/Okanagan Region and is administered from the Cascades Natural Resource District office located in the town of Merritt. It is bounded on the north by the Kamloops TSA, on the west by the Lillooet and Fraser TSAs, and on the east by the Okanagan TSA. Manning Park, Cathedral Park and the border between Canada and the United States of America is on the south.

The Merritt TSA includes the mountainous terrain and steep river valleys of the Cascade Mountains in the west and the relatively dry, flat Thompson Plateau in the east. The TSA encompasses two major river systems: the Similkameen and the Nicola.
Situation Analysis - Version 1.3

Figure 1 Overview Map of the Merritt TSA

Approximately 71% of the TSA is forested crown land, and about 52% is considered to be the THLB. Lodgepole pine comprises approximately half of the forested land base, with Douglas-fir, spruce, ponderosa pine, subalpine fir, and trembling aspen making up the majority of the remainder (Figure 2). There are also minor amounts of western red cedar, western larch, and western hemlock.

Lodgepole pine comprises approximately two thirds of the timber available for harvest, primarily because some Douglas-fir is required to provide snow interception cover for mule deer, and deciduous species are not considered commercial species within the TSA (Figure 3).
The Merritt TSA lies within the Thompson-Nicola Regional District, and about 60% of the population resides in the major centres of Merritt (population 7000) and Princeton (population 2687). Smaller communities include Brookmere, Tulameen, Missezula Lake, Douglas Lake, Upper Nicola, Lower Nicola, Coldwater, Shackan, Nooatich, Upper Similkameen, Osprey Lake and Allison Lake. The public sector, forestry, and tourism are the major employment sectors, with agriculture, construction and mining also contributing to the local economy. Forestry and the public sector are the largest contributors with the forest sector accounting for approximately 25 percent of the basic income in the Merritt area and the public sector accounting for about 20 percent. The forest sector supports numerous other jobs in the area through companies and employees purchasing goods and services.
2 Summary of Current Plans and Strategies

A strategic land use plan has not been completed for the Merritt TSA. Instead, a number of planning processes and key sources of information guide forest management in addition to the legislated requirements. This section provides a brief description of these considerations.

2.1 Provincial Timber Management Goals and Objectives

Provincial Timber Management Goals and Objectives (FLNRO 2014) set high-level provincial timber management goals, objectives and targets to provide context and guidance for planning across management units - including specific direction to ISS projects. These timber management goals are intended to be aligned with the Vision for B.C. Provincial Forests, which includes:

- Managing forests to meet present needs without compromising the ability of future generations to meet their needs;
- Providing stewardship of forests based on an ethic of respect for the land;
- Maintaining and restoring proper ecosystem function and promoting ecological resilience for influences such as climate change;
- Balancing economic, social, spiritual, ecological and recreation values of forests to meet the needs of peoples and communities, including First Nations; and
- Conserving biological diversity, soil, water, fish, wildlife, scenic diversity and other forest resources.

The 5 main timber management goals are summarized below while context and much more detail is available in the source document.

2.1.1 Timber volume flow over time

Timber volume flow over time describes what has traditionally been the focus of sustainable forest management. The provincial aim is not a strict even flow regime, but rather predictable and reliable flows to support economic and social objectives. Timber flow will be managed in an integrated manner with other key forest values.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote resilient and diverse forest ecosystems that will provide a sustainable flow of economically valuable timber that generates public revenues, supports robust communities, healthy economies that provide an opportunity for a vigorous efficient and world competitive timber processing industry</td>
<td></td>
</tr>
</tbody>
</table>

| Objectives | 1) Timber is managed in an adaptive manner to address the dynamic nature of natural processes and the inherent uncertainty of managing over long time frames.
2) Attainment in the long-term of realized harvest flows that benefit from timber management activities including harvest practices and silviculture investments.
3) Data used to determine timber flows will be continuously improved, to verify assumptions and to reduce uncertainty. |

| Targets | 1) A mid-term timber supply of at least 57 million m³/year and a long-term timber supply of at least 65 million m³/year.
2) Local targets can be initially set based on the most recent Timber Supply Review projections for mid- and long-term timber supply in individual management units.
3) Targets for timber flow may be refined through TSA level analysis and planning such as through Type 4 silviculture strategies (ISS in this case). |
2.1.2 Timber quality

Timber quality is defined by species, log sizes and grades, end use, and economic value. In order to minimize risks and maintain future options for different products, a diverse portfolio of timber quality is desirable.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Maintain a diversity of timber-related economic opportunities through time.</th>
</tr>
</thead>
</table>
| Objectives | 1) Proportions of high-value tree species within each management unit will be maintained at no less than pre-harvest levels.
2) Proportions of lower value species within each management unit will not be increased above pre-harvest levels.
3) To restock new forests with trees which will produce high quality fibre as the primary product objective.
4) To ensure a proportion of logs are of premium grade. |
| Targets | 1) No reduction in the proportion of provincial forest land made up of high-value tree species1.
4) To produce a minimum of 10 per cent premium grades from B.C.’s forests.
5) Local targets are set through management unit plans such as Type 4 silviculture strategies where current or potential local industry requirements are addressed.
6) Management practices and timber supply review assumptions will be aligned. |

2.1.3 Tree Species Composition

Tree species influences timber values, quality, productivity, health, resilience, and non-timber values. Tree species diversity is a fundamental climate change adaptation strategy.

<table>
<thead>
<tr>
<th>Goal</th>
<th>To maintain or enhance timber and non-timber values, forest health, and resilience, through the management of tree species composition.</th>
</tr>
</thead>
</table>
| Objectives | 1) Where it is ecological feasible, reliable and productive, a resilient mix of species at both the stand and landscape scales will be used to reduce long-term forest risks and maintain future options.
2) Promote reforestation of species compositions that reduce vulnerability from climate change and forest health impacts on timber and other forest values.
3) Management will reduce the occurrence of species where future risks (ecological and economic) are disproportionately high compared with other species.
4) Seedlings planted are grown from source-identified and genetically-diverse tree seed that is climatically-suitable to the planting site. |
| Targets | 1) The proportion of monoculture stands2 at free growing in B.C. is no greater than the proportion of monoculture stands prior to harvest.
2) Within the management unit, the total number of tree species at free growing is no less than what was present prior to harvest.
3) Within the management unit, the proportion of a specific tree species at free growing is no more than 10 per cent greater than what was present prior to harvest unless it increases the proportion of higher value species or specific species diversity targets are approved for the management unit.
4) By 2020, all tree seed used to establish a free growing stand is registered and selected in accordance with new climate-based seed transfer standards.
5) Initial timber targets for each management unit, will be set using tree species diversity information at: http://www.for.gov.bc.ca/hfp/sof/species%20monitoring%20reports.htm.
6) Management unit plans such as Type 4 silviculture strategies will be used to define future targets. |

2.1.4 Stand productivity and growing stock

Management of stand productivity and growing stock encompasses the health, genetics, density, and stocking of various stands so that they can productively utilize site resources.

1 ‘High value species’ include western redcedar, yellow-cedar, Douglas-fir, western larch, spruce, pine, and other species that have explicit regional or local strategic objectives related to value.

2 ‘Monoculture stands’ means at least 80% of trees in a stand are one species.
Goal
Maintain or improve stand productivity.

Objectives
1. Develop cost effective management options for the consideration of government with timely management unit analysis and planning after significant and sudden changes to growing stock from natural disturbances and salvage harvesting.
2. Management will target full site occupancy of growing space, after making effective allowances for other values and risks.
3. The proportion of high-risk species across a management unit will not be increased and, where future risks for such species are disproportionately high compared with other species, they will be gradually reduced.
4. Decisions at the stand level will not be made solely on the basis of return-on-investment data, but will consider stand level risks and management unit objectives and targets.
5. Use tree seed selected for improved growth or pest tolerance, where available.

Targets
1. Harvested areas will be reforested with tree species and stocking levels that meet or exceed growth and yield projections assumed in TSR.
2. By 2020, 75 per cent of all trees planted will be grown from selected seed with an average genetic gain of 20 per cent.
3. Local targets such as growing stock/harvest ratios and minimum proportion of Mean Annual Increment (MAI) at harvest will be set using management unit plans such as Type 4 silviculture strategies (ISS in this case).

2.1.5 Inherent site capacity

Inherent site capacity is about the biophysical attributes of the land as they relate to timber productivity. Site capacity is mostly influenced by soil attributes, hydrological flows and balances, and associated processes such as decomposition and nutrient cycling.

<table>
<thead>
<tr>
<th>Goal</th>
<th>To maintain the inherent site capacity of B.C.’s forested ecosystems.</th>
</tr>
</thead>
</table>
| Objectives | 1. The permanent footprint of road, trails, and landings will not exceed what is necessary for logical and efficient natural resource management.
2. Access construction and maintenance will maintain natural drainage patterns and flows, and will not contribute to slope failures or chronic erosion over the long term.
3. Harvesting, silviculture and other management activities will not result in significant soil compaction and/or erosion on growing sites, temporary trails and work areas that will be reforested.
4. Harvesting, silviculture and other management activities will be conducted to provide for maintenance or recovery of proper nutrient cycling and soil nutrition. |
| Targets | 1. The Forest Planning and Practices Regulation (FPPR), s. 35, restricts soil disturbance to a maximum percentage of site disturbance within the net area to be reforested
2. The province has incorporated explicit maximum percentage limits for site disturbance and construction of permanent access structures into the FPPR, s. 36. The ministry’s target is to have the average site disturbance for the province at less than 5 per cent.
3. The province directs the maintenance of natural drainage patterns for road construction and maintenance in FPPR, s. 37-39.
4. Local targets may be set based on management unit planning and analysis. |

Source: FLNRO 2014 - Provincial Timber Management Goals and Objectives (see Error! Reference source not found.)

2.2 Designations and objectives set by government

In June 2004 the minister approved the designation of landscape units and non-spatial old retention targets to conserve biodiversity at the landscape level for the Merritt TSA. Non-legal old growth management areas were subsequently drafted to provide operational guidance to licensees.

To manage important habitats, Wildlife Habitat Areas (WHA) have been established for the following species:

- Coastal Tailed Frog
- Great Basin Spadefoot
- Grizzly Bear
- Lewis’s Woodpecker
- Western Screech Owl
- Williamson’s Sapsucker
- Data Sensitive species

Additional WHAs are proposed for Western Screech Owl and a Data Sensitive species, and there may be more Williamson’s Sapsucker WHAs proposed in the future.

Government Action Regulation Orders (GAR) have been implemented to establish general wildlife measures and Ungulate Winter Range (UWR) locations to conserve critical habitat for mule deer and mountain goat (Figure 15).

2.3 BC Mountain Pine Beetle model (BCMPB)

The BC Mountain Pine Beetle model (BCMPB) was developed by FLNRO to project the annual volume of mature pine killed by MPB. Aerial overview survey data are fundamental to calibration of BCMPB and these data are provided by a series of annual surveys. Projection reports and updates have been published annually since 2004, with the most recent update projecting infestation levels to 2015.

As illustrated by Figure 4, the level of red attack in the Merritt TSA started to increase dramatically in 2004, reaching a peak in 2007. This was followed by a sharp decline, with red attack reaching the pre-2004 levels in 2011.

![Figure 4 Annual MPB Kill Levels on the Merritt TSA THLB](image)

Figure 4 Annual MPB Kill Levels on the Merritt TSA THLB

Figure 5 provides the current cumulative pine volume killed by year, relative to predictions of the cumulative kill for previous versions of the model. The cumulative kill to date is significantly less than predicted in previous years.
Since the MPB infestation began in the district in 2004, harvesting has focused on salvaging dead and dying pine trees, so that pine accounts for approximately 70 percent of the total volume harvested. The 2015 Timber Supply Review public discussion paper has indicated that only about 2.5 M m³ of dead pine remain on the THLB and that the dead pine volume is dispersed throughout stands that include significant volumes of live timber.

Using data from the provincial Vegetation Resource Inventory and applying the TSR 2015 shelf life function (see Section 5.5.1) confirms that roughly 67% of the dead pine in the Merritt TSA THLB is in stands where the dead pine component is 50% or less of the total volume of the stand (Figure 6).
2.4 **Southern Interior Beetle Action Coalition**

The Southern Interior Beetle Action Coalition (SIBAC) is a non-profit society comprised of nine Regional Districts and six Tribal Councils in the southern interior; and the Community Futures Development Corporation of Central Interior First Nations.

With funding from the member organizations and the federal and provincial governments, SIBAC completed extensive research and public consultations to complete its “SIBAC MPB Assessment and Mitigation Plan” in October 26, 2009.

SIBAC's research and planning analysis clearly indicated there was an underlying rural development challenge facing many of the smaller rural communities in the southern interior. As a result, since April 2011 SIBAC has focus on developing, supporting and funding projects and initiatives that will stimulated and advance rural development in the southern interior.

2.5 **Mid-Term Timber Supply Action Plan**

In response to the Special Committee on Timber Supply’s recommendations the FLNRO released *Beyond the Beetle: A Mid-Term Timber Supply Action Plan* in October, 2012. The key elements of the action plan focus on reforestation, forest inventory, fuel management and intensive and innovative silviculture. Other information relating to mid-term timber supply includes a backgrounder document for the Merritt TSA released in June, 2012. This backgrounder document includes maps and details on the status of land use plans, past allowable annual cuts, mid-term timber supply forecasts, silviculture investments, economic profiles, opportunities for diversification, opportunities for mitigations, and resource value implications. It provided information to inform the discussion on whether to initiate a process to review and/or amend objectives such as visual quality, old growth management, and ungulate winter ranges to mitigate the fall-down in mid-term timber supply. No specific analysis was completed to investigate mitigation opportunities and no recommendations were made.

The backgrounder also indicated that enhanced forest management such as intensive silviculture and strategic planning of harvesting may provide some opportunities for increasing the mid-term timber supply. In particular:

1. Mitigation opportunities exist through the salvage and reforestation of beetle-killed stands with low value overstory. A reforestation program funded by Forests for Tomorrow could soften the transition if supported by a salvage program, and it could mitigate the mid-term by a small amount through enabling stands to be harvested earlier.

2. Spacing and fertilization of younger stands may improve the mid-term timber supply slightly by decreasing time to merchantability of these stands.

3. Continued support of forest health initiatives is imperative. The protection of the remaining growing stock from pest/disease and initiation of high-priority inventory and analysis projects should be top priorities from a timber supply perspective.

4. Douglas-fir selection areas are expected to contribute to the timber supply throughout the mid- and long-term. Appropriate management planning is necessary to ensure the harvest from this profile is captured and projected benefits are realized.
2.6 Multiple Resource Value Assessment

The goal of sustainable forest management is to achieve a balance between environmental, social and economic objectives. Multiple resource value assessments (MRVA) show the results of stand and landscape-level monitoring carried out under the Forest and Range Evaluation Program (FREP). These reports provide resource professionals and decision makers with information about the environmental component of this ‘balance’ so that they can assess actual outcomes compared to expectations.

The Forest and Range Practices Act (FRPA) lists eleven resource values essential to sustainable forest management in the province; biodiversity, cultural heritage, fish/riparian and watershed, forage and associated plant communities, recreation, resource features, soils, timber, visual quality, water, and wildlife. The MRVA report is a summary of the available field-based assessments of the conditions of these values. Field assessments are generally conducted on or near recently harvested cut blocks and therefore are only evaluating the impact of industrial activity and not the condition of the value overall (i.e., they don’t take into account protected areas and reserves). Most of the information is focused on the ecological state of the values and provides useful information to resource managers and professionals on the outcomes of their plans and practices. This information is also valuable for communicating resource management outcomes to First Nations, stakeholders, and the public. It also provides a foundation for refining government’s expectations for sustainable resource management in specific areas of the Province.

Source: Merritt NR District MRVA November 2013

The extraction and development of natural resources, along with natural factors (e.g., insects, wind, floods) can influence and impact ecological condition. The goal of effectiveness evaluations is to assess these impacts on the state of public natural resource values (status, trends, and causal factors); such evaluations do not assess compliance with legal requirements. These evaluations help resource managers:

- assess whether the impacts of resource development result in sustainable resource management,
- provide transparency and accountability for the management of public resources,
- support the decision-making balance between environmental, social, and economic factors, and
- inform the ongoing improvement of resource management practices, policies, and legislation.

The MRVA produced a summary of key findings, and in some cases identified performance trends, as illustrated in the graphs taken from the report (Figure 7). The MRVA provides baseline data for comparing against future performance.

Source: Merritt MRVA Report, November 2013

![Riparian: Resource Development Impacts on Stream Function](image)

Overall Trend in Riparian Stewardship: Neutral
Overall Trend in Water Quality: Insufficient data

Overall trend in Stand-level Biodiversity Management: Improving

Overall trend in Visual Quality Management: Insufficient data

Overall trend in Cultural Heritage Management: Insufficient data

Overall trend in Resource Development Impacts: Insufficient data
No trend established at this time.

Overall trend in Wildlife Management: Insufficient data

Figure 7 MRVA Performance and Trends - Merritt TSA

2.7 Provincial Stewardship/Timber Harvesting Land Base Stabilization
The FLNRO’s Forest Competitiveness Initiative has produced a set of guidelines for implementing Provincial Stewardship/THLB Stabilization Projects. The intent of these projects is to utilize the most up-to-date direction and inventory to help optimize the stewardship of Provincial forest and natural resources while realizing the full operational potential of the THLB. The best possible combination of overlapping the many THLB constraints, referred to as co-location, is a key objective of the process aimed to mitigate the reduction of and perhaps increase the THLB. These projects will not change any existing land use plans or legislation.

2.8 Forest Health Strategy
The 2013 Merritt TSA Forest Health Strategy was prepared with the goal of protecting forest resources from damaging agents that threaten the resources immediate and long-term sustainability. Forest health pests were ranked following the Provincial Forest Health Strategy, based on known impacts to forest resource values, availability of operational detection and treatment methods, cost and benefits of applying detailed detection and treatment activities, overall level of knowledge of the hazards and risk and distribution and incidence levels of the pests. Table 1 summarizes the priority ranking of forest health pests in the TSA.
Priority Ranking of Forest Health Pests in the Merritt TSA

<table>
<thead>
<tr>
<th>Very High</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Very Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain Pine Beetle</td>
<td>Western Spruce Budworm</td>
<td>Cattle</td>
<td>Western Balsam Bark Beetle</td>
<td></td>
</tr>
<tr>
<td>Spruce Bark Beetle</td>
<td>Lodgepole pine Dwarf Mistletoe</td>
<td>Tomentosus Root Rot Vole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armillaria Root Disease</td>
<td>Hard pine stem rusts</td>
<td>White pine blister rust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phellinus Root Disease</td>
<td>Douglas-fir Beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9 Partition Implementation and Stewardship Guiding Principles

In response to changing bark beetle dynamics within the Merritt TSA, the Cascades district developed a guiding principles document effective January 1, 2013 that NSIFS licensees have committed to follow until the end of the current AAC period. This document provides guidance in the following areas:

1. Bark Beetle Harvest Priorities, with the objective to preserve live, healthy timber that will likely be available to contribute towards midterm timber supply and to maximize the removal of dead timber from the landbase.
2. Mountain Pine Beetle Non Susceptible Species Retention Policy for the Merritt TSA, with the objectives of providing retention levels adequate to meet stand level biodiversity objectives, providing guidance to those preparing operational plans, and to ensure impacts to timber values are limited.
3. Recommendations Pertaining to Hydrological Concerns, with the objective of mitigating impacts to water quality, timing of runoff, and fish populations and habitat.
4. Species Selection for Artificial Regeneration, with the objective of providing direction to licensees on acceptable species.
5. Landscape Level Biodiversity and Large Scale Salvage, in accordance with the Chief Forester’s Guidance on Landscape and Stand-level Structural Retention in Large-Scale Mountain Pine Beetle Salvage Operations.
6. Fuel Management, with the objective of providing fuel breaks to provide areas for wildfire management branch to fight fires from in order to protect communities and other values on the landscape.

Details concerning these strategies are contained within the document.

2.10 Silviculture Strategies

2.10.1 Type 1 Silviculture Strategy

In March 2006, Forsite Consultants Ltd., Symmetry Consulting Group, and Mike Fenger and Associates completed a Type 1 silviculture strategy for the Merritt TSA. The focus was to mitigate impacts to non-timber values brought about by the mountain pine beetle (MPB) epidemic and associated harvesting, while also looking to treat non lodgepole pine stands to improve midterm timber supply. Addressing non-timber issues was seen as the highest priority as significant indirect benefits to timber supply were evident. Limited opportunities to improve timber supply over a five year period were identified because salvage was keeping up to MPB mortality, most burned areas had been reforested, and there were limited non-pine stands outside the dry-belt (see section 5.9) to fertilize.
2.10.2 Type 2 Silviculture Strategy

A Type 2 silviculture strategy was developed in April 2007 by Timberline Forest Inventory Consultants Ltd. This project explored opportunities to substantially improve future timber supply while retaining high priority First Nations and environmental areas. The primary opportunity to improve timber supply was identified as carrying out planting on areas heavily impacted by MPB without silviculture obligations.

2.10.3 Forests for Tomorrow

The Forests for Tomorrow (FFT) program aims to improve the future timber supply and address risks to forest values through the re-establishment of young forests. It focuses on land that is primarily within the THLB but outside of forest industry obligations.

Initially, the program focused on areas impacted by forest fires since 2003. However, since 2009 over-story removal stands deemed uneconomic for management by current licensees has been conducted through BC Timber Sales’ Innovative Timber Sales.

To 2013, the FFT program in the Merritt TSA has completed reforestation on over 6,250 hectares and has completed 2,094 hectares of over-story removal (Table 2).

Table 3 summarizes the forecast activities from 2014 to 2018 in the FFT 5 year plans. These projected activities are dependent on the continuation of FFT funding, the amount of eligible stands within the TSA, market conditions and the demand for low quality fibre.

Source: Merritt TSR Data Package – 2014 Factor 21 Forests for Tomorrow

Table 2 Forests For Tomorrow Activities from 2003 to 2013 in the Merritt TSA.

<table>
<thead>
<tr>
<th>Year</th>
<th>Planting (hectares)</th>
<th>Over-story Removal (hectares)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hectares</td>
<td>seedlings</td>
</tr>
<tr>
<td>2003</td>
<td>14.7</td>
<td>18,000</td>
</tr>
<tr>
<td>2006</td>
<td>204.8</td>
<td>300,410</td>
</tr>
<tr>
<td>2007</td>
<td>510.5</td>
<td>692,935</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>842.0</td>
<td>1,035,145</td>
</tr>
<tr>
<td>2010</td>
<td>1,086.5</td>
<td>1,680,085</td>
</tr>
<tr>
<td>2011</td>
<td>1,222.3</td>
<td>1,849,705</td>
</tr>
<tr>
<td>2012</td>
<td>1,254.7</td>
<td>1,991,605</td>
</tr>
<tr>
<td>2013</td>
<td>1,122.8</td>
<td>1,788,045</td>
</tr>
<tr>
<td>Totals</td>
<td>6,258.3</td>
<td>9,355,930</td>
</tr>
</tbody>
</table>

Table 3 Forecast Forest for Tomorrow Activities from 2014 to 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Planting (approximate)</th>
<th>Over-story Removal (hectares)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hectares</td>
<td>seedlings</td>
</tr>
<tr>
<td>2014</td>
<td>720</td>
<td>1,151,500</td>
</tr>
<tr>
<td>2015</td>
<td>812</td>
<td>1,300,000</td>
</tr>
<tr>
<td>2016</td>
<td>206</td>
<td>330,000</td>
</tr>
<tr>
<td>2017</td>
<td>200</td>
<td>320,000</td>
</tr>
<tr>
<td>2018</td>
<td>162</td>
<td>260,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2100</td>
<td>3,361,500</td>
</tr>
</tbody>
</table>
2.11 Grassland Conversion and Ecosystem Restoration

The vision of the Provincial ecosystem restoration program is to restore identified ecosystems to an ecologically appropriate condition creating a resilient landscape that supports the economic, social, and cultural interests of British Columbia (Neil & Anderson, 2009). Ecosystem Restoration is defined as the process of assisting with the recovery of an ecosystem that has been degraded, damaged, or destroyed by re-establishing its structural characteristics, species composition, and ecological processes.

Certain grassland ecosystems within the Merritt TSA are being encroached upon by Douglas-fir/ponderosa pine forests. TSR 2 identified approximately 1,258 THLB hectares of grassland within the IDFdk1a, IDFxh1a, IDFxh2a, and BGw1 biogeoclimatic zones. No new data has been collected since TSR 2, but district personnel believe this estimate may be too low.

Source: Merritt TSR Data Package – 2014 Factor 31 – Grassland Conversion and Ecosystem Restoration

A project recently completed for FLNRO indicates that there may be significant opportunities for additional ecosystem restoration in the Cascades District, with up to 31,609 hectares identified as high priority (Forsite, 2015). Areas within the Merritt TSA and within THLB were not specifically described.

Approximately 586 hectares of forest were treated with the goal of restoring these stands to a more open forest type, and a further 1,041 hectares were treated to reduce fuel loading in community interface zones. The Cascades district currently has no further plans to conduct ecosystem restoration activities.

2.12 Cumulative Effects Framework

Source: Addressing Cumulative Effects in Natural Resource Decision Making, 2014

Cumulative effects are changes to economic, environmental, and social values caused by the combined effects (positive or negative) of present, past and reasonably foreseeable actions or events. The Province is implementing a Cumulative Effects Framework which includes policy, procedures and decision support tools designed to improve the assessment and management of cumulative effects in natural resource decision making in BC.

The output from the Cumulative Effects Framework is meant to identify issues and options to explore, which will provide useful inputs to the ISS process.

Key elements of the framework include:

a. Values Foundation
b. Identify a priority set of values and associated objectives
c. Confirm the methods for assessment
d. Identify and collate data
e. Confirm the appropriate geographic areas for cumulative effects assessment and reporting with each Region
f. Assessment
g. Current condition
h. Foreseeable future condition to identify emerging issues and risk
i. Longer term scenarios of resource development, natural disturbances, and other climate change-induced ecological changes may be required

Decision Support to provide easy access to:

a. Mapped location of key values being monitored and assessed
b. Current condition and trend for those values, reflected in ‘risk maps’ for each value and in tabular data

These tables are ‘risk maps’ for each resource value and provide a visual representation of risk levels across different areas.

c. Relevant objectives, methods and assumptions

The framework includes specific objectives, monitoring methods, and assumptions to evaluate the condition of the resource values.

d. Monitoring

Existing monitoring programs will be leveraged to monitor compliance, implementation, and effectiveness.

The framework is being implemented in the Merritt TSA, and has evaluated the current condition, historic trends, and near-term future condition of six resource values including:

- Fish Stream Habitat
- Moose Populations
- Mule Deer Populations
- Visual Quality Objectives
- Grizzly Bear Populations
- Old Growth Management Areas

Watershed condition is also being assessed, but it is a hazard model that can contribute to risk assessments for fish habitat, drinking water quality, risk to people and property and/or aquatic biodiversity.

The number of areas for moose habitat, mule deer winter range and OGMAs meeting expectations has improved, while visual condition has declined, possibly because policy requirements are not clear enough and harvesting of stands affected by mountain pine beetle.

Mule deer and moose populations are stable, although there is risk to some populations because of limited winter habitat, increased road density, and portions of habitat policy that are unclear. The grizzly bear population is reported to be functionally extirpated.

The fish habitat assessment was limited to the range of salmon and trout at risk (i.e. Nicola watershed), and results indicate significant risk linked to forest clearing adjacent to non-fish bearing streams. Other issues include the many roads and crossings. Outside the Nicola watershed, hazards associated with riparian clearing, sediment input and peak flows have increased due to the cumulative effect of natural resource development and natural disturbance.

There are non-forestry resource project proposals in 12% of OGMAs, 18% of mule deer planning cells, 20% of visual quality areas, and 90% of moose planning cells, indicating the need for policy guidance for all resource sectors.

Recommendations from the assessment fall into one of three categories, including:

- The need for more information (monitoring, more detailed assessment, research)
- Those targeted at resource management practices
- Policy (review, refinement, development).

Source: Cumulative Effects Assessment for the Merritt Operational Trial

2.13 Nicola-Similkameen Innovative Forest Society

The Nicola-Similkameen Innovative Forest Society (NSIFS) is comprised of eight members (Aspen Planers Ltd., Nicola Tribal Association, BC Timber Sales, Tolko Industries Ltd., Upper Similkameen Indian Band, Weyerhaeuser Company Ltd, and Stuwix Investment). Four of the members hold an Innovative Forest...
Practices Agreement (IFPA) and carried out the requirements of this agreement through the consensus of the NSIFS. These IFPAs expired in December 2015.

The vision for the society is:

1. NSIFS uses innovative forest management practices that incorporate Aboriginal knowledge and values and public involvement in order to increase the productivity of a healthy and resilient working forest. These local forests provide increased forest values, additional investment and enhanced employment opportunities while assuring environmental, economic, and social sustainability for communities in the Nicola-Similkameen region.

2. NSIFS has produced three Forestry Plans for submission to the Regional Executive Director, with the most recent one being submitted in June 2012. The main purpose of this plan is to outline the ongoing work in support of the IFPA AAC uplift request, highlight the accomplishments achieved from Forestry Plan II, and identify the program areas the NSIFS will continue to work on.

The strategic objectives for Forestry Plan III are:

- create an innovative forest management environment;
- support First Nation’s communities;
- increase the sustainable harvest;
- enhance environmental values;
- strengthen forest inventories and support tools; and
- maintain effective community involvement.

The NSIFS has completed many projects in the areas of habitat modelling, predictive ecosystem mapping, MPB, biodiversity, hydrology, species at risk, and wildlife. Through the NSIFS, many of the First Nations have collaborated with licensees in developing tools that assist in the identification of specific cultural and wildlife values on the landscape.

The FLNRO’s IFPA program is being phased out by xxxx and will be replaced with... (Paul or Lorne to fill in here). Did they expire in December 2015?

2.14 Nicola Thompson Fraser Sustainable Forest Management Plan

Aspen Planers Ltd., BC Timber Sales, Canadian Forest Products Ltd., Gilbert Smith Forest Products Ltd., and Tolko Industries Ltd. are the participating entities in the Nicola Thompson Fraser Sustainable Forest Management (SFM) Plan (January 2015). This plan was developed to achieve certification to the Canadian Standards Association (CSA) Z809-08 Sustainable Forest Management Standard, and applies to defined areas within the Kamloops, Lillooet and Merritt TSAs. Within the Merritt TSA, the plan applies to the licensee operating areas for Aspen Planers, BC Timber Sales, and Tolko.

Through this plan, the participating licensees have committed to conducting business in a fashion that protects the environment while ensuring sustainable development of forests through adherence to a set of management and operational principles. The SFM plan is a “roadmap” to current and future strategies related to long-term performance, with values, objectives, indicators and targets developed in collaboration with a Public Advisory Group. The SFM plan is an evolving document that will be reviewed and revised on an annual basis with the Public Advisory Group.

Evaluation of participating licensees’ performance against the indicators and targets is reported annually and is available on the Nicola Thompson Fraser certification website: http://thompsonokanagansustainableforestry.ca
3 First Nations and Cultural Heritage

Approximately thirty percent of the population for the area are represented by First Nations living within or immediately adjacent to the Merritt TSA. First Nations have a strong history of traditional use on the lands within the Merritt TSA. Cultural use sites can be found throughout the TSA and include areas of spiritual importance as well as traditional use of fish, wildlife, and plants.

Local First Nations are extensively involved at the operational level of forest planning in the Merritt TSA, including the Nicola Similkameen Innovative Forestry Society (section 2.9). Through this involvement, forest licensees are able to work with First Nations to accommodate known aboriginal interests with minimal timber supply impacts.

Nlaka’pamux Nation

The Nlaka’pamux Nation is represented by 15 communities (approximately 6,524 people) located within, or immediately adjacent to, the Merritt TSA. Members residing outside of Merritt TSA live close by in the Fraser Canyon area.

All Nlaka’pamux member bands have aboriginal interests in areas within the Merritt TSA and all are signatory to the 2003 Nlaka’pamux Writ of Summons claiming title to Nlaka’pamux territory. While the Nlaka’pamux have aboriginal interests over the entire Merritt TSA (including areas beyond the TSA) the communities are largely located to the north and west between the Fraser/Thompson and Coldwater River systems.

There are two tribal associations with the Nlaka’pamux which represent a number of the bands. The Nicola Tribal Association (NTA) and the Nlaka’pamux Nation Tribal Council (NNTC) are responsible to varying degrees for strategic planning, economic development and coordination of information for the communities. It is important to note that not all of the bands are represented by tribal association and even when represented by tribal associations individual bands may require unique levels of engagement depending on the type and topic of engagement.

Okanagan Nation

The Okanagan Nation has the next largest representation within the Merritt TSA having three communities which are located within the east and south east portions of the TSA. In addition, four Okanagan Nation communities outside the TSA have interests within the TSA. In total the Okanagan Nation represents approximately 5,877 people.

The Okanagan Nation has asserted aboriginal interests to a large portion of the Merritt TSA (2003 WRIT) and is represented by the Okanagan Nation Alliance (ONA).

Secwepemc Nation

The Secwepemc people are a nation of 17 bands occupying the south central part of BC. The Secwepemc Nation has interests in the north section of the Merritt TSA and are also signatory to a 2003 WRIT.

Sto:Lo Nation

The Sto:lo Nation is comprised of eleven Sto:lo communities and has a small area of traditional territory largely overlapping with heights of land in the south section of the Merritt TSA.
4 Forest Licensees

Within the Merritt TSA, seven licensees currently hold replaceable harvesting rights while eight licensees hold non-replaceable harvesting rights. Details of the volumes allocated to licensees are summarized in Table 7 within Section 5.4.5.

4.1 Replaceable Forest Licensees

Ardew Wood Products Ltd. is a family owned business that previously operated a sawmill located in Merritt. This mill was closed in January, 2013.

Aspen Planers Ltd. is an independent, family owned business that operates a lumber mill in Merritt, as well as, post and rail facilities in Merritt and Princeton.

Tolko Industries Ltd. is a large, family owned business that operates a dimension lumber mill in Merritt, plus additional lumber, plywood, OSB, and paper manufacturing facilities located across western Canada.

Weyerhaeuser Company Ltd. is a large, multinational corporation that operates a lumber mill in Princeton. Within Canada, Weyerhaeuser operates seven timberland operations in BC, Alberta, Saskatchewan and Ontario.

Stuwix Resources Ltd. is a fibre management and marketing company that is owned jointly by seven First Nations Bands (Coldwater Band, Nooaitch Indian Band, Siska Indian Band, Upper Similkameen Band, Cook’s Ferry Band, Upper Nicola Band, and Shackan Band).

Lower Nicola Indian Band, located six kilometres west of Merritt at Shulus, holds one replaceable licence.

4.2 Non-Replaceable Forest Licensees

Eight licensees hold thirteen non-replaceable forest licences within the Merritt TSA. Five of these licensees are First Nations: Coldwater Indian Band (three licences), Siska Indian Band (one licence), Nooaitch First Nation (two licenses), and Shackan Indian Band (two licences). The other three licences are held by Ardew Wood Products Ltd., Aspen Planers Ltd., and Princeton Post and Rail Ltd.

4.3 BC Timber Sales

BC Timber Sales has a mandate to provide the cost and price benchmarks for timber harvested from public land by auctioning blocks through timber sale licenses. This semi-autonomous program within FLNRO has an AAC allocation of 389,520 m³/year in the Merritt TSA. BC Timber Sales is currently certified to the ISO 14001: 2004 Environmental Management System (EMS) Standard and, as part of the Provincial Sustainable Forestry Initiative single certificate initiative, BC Timber Sale’s Kamloops Business Area is certified under the 2015 - 2019 Sustainable Forestry Initiative Standard.

4.4 Area-Based Tenures

Area-based tenures within the Merritt TSA are awarded their own AAC based on a defined area and management regimes. While these tenures are not within the scope of this project, they are affected by similar issues and regulatory regimes.
Community Forests

The Vermillion Forks Community Forest is an area-based tenure of 12,950 hectares held in partnership between the Town of Princeton, the Upper Similkameen Indian Band, and the Regional District of Okanagan Similkameen. It has an AAC of 20,000 m³/year and is located west of Princeton.

Woodlots

There are 23 woodlots within the Merritt TSA; each managed by individual woodlot licensees. The crown land portion of these woodlot licences totals 14,738 hectares with an AAC of 71,305 m³/year. An additional 2,803 m³/year of AAC is attributed to the 4,294 hectares of Schedule A (private) land within these licences. Three applications totalling 2,424 hectares are currently being considered for the woodlot program.
5 Timber Supply

5.1 Resource Inventories

Table 4 lists the inventories presented in the TSR 2015 technical report. This information provides an up-to-date foundation for this Merritt TSA ISS project.

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Vintage</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Supply Area Boundary</td>
<td>British Columbia Government Warehouse (BCGW) (WHSE_ADMIN_BOUNDARIES.FADM_TSA)</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td>BCGW (WHSE_FOREST_VEGETATION.F_OWN)</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Woodlots & Community Forests</td>
<td>BCGW (WHSE_FOREST_TENURE.FTEN_MANAGED_LICENCE_POLY_SVW)</td>
<td>2008</td>
<td>2014</td>
</tr>
<tr>
<td>Vegetation Resource Inventory</td>
<td>BCGW (WHSE_FOREST_VEGETATION.VEG_COMP_LYR_R1_POLY)</td>
<td>1991</td>
<td>2013</td>
</tr>
<tr>
<td>Provincial Managed Stand Site Productivity</td>
<td>FNLRO Forest Analysis and Inventory Branch</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Depletion Layer</td>
<td>BCGW/RESULTS and FNLRO Forest Analysis and Inventory Branch</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Heritage Trails</td>
<td>BCGW (WHSE_FOREST_TENURE.FTN_RECREATION_LINES_SVW)</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Existing Roads</td>
<td>FNLRO Thompson Okanagan Region</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Environmentally Sensitive Areas</td>
<td>FNLRO Cascades District (Environmentally_Sensitive_Areas.gdb)</td>
<td>1994-1996</td>
<td></td>
</tr>
<tr>
<td>Terrain Stability</td>
<td>FNLRO Cascades District (Terrain_Stability_MAPPING.GDB / TSM_CLASS_5_TME)</td>
<td>????</td>
<td></td>
</tr>
<tr>
<td>Operability Lines</td>
<td>FNLRO Cascades District (fopr_sir)</td>
<td>1990s</td>
<td></td>
</tr>
<tr>
<td>Digital Elevation Model Elevation, Slope and Aspect Data</td>
<td>GEOBC</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Parks and Ecological Reserves</td>
<td>BCGW (WHSE_TANTALIS.TA_PARK_ECORES_PA_SVW)</td>
<td>2008</td>
<td>2014</td>
</tr>
<tr>
<td>Stream, Lake, and Wetland Class Data</td>
<td>FNLRO Cascades District (Riparian_Mgmt.gdb)</td>
<td>1990s</td>
<td></td>
</tr>
<tr>
<td>Informal Old Growth Management Areas</td>
<td>FNLRO Cascades District</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Visual Quality Polygons</td>
<td>BCGW (WHSE_FOREST_VEGETATION.REC_VISUAL_LANDSCAPE_INVENTORY)</td>
<td>2004</td>
<td>2014</td>
</tr>
<tr>
<td>Ungulate Winter Range Planning Cells</td>
<td>BCGW (WHSE_WILDLIFE_MANAGEMENT.WCP_UNGULATE_WINTER_RANGE.SP)</td>
<td>2005</td>
<td>2014</td>
</tr>
<tr>
<td>Approved Wildlife Habitat Areas</td>
<td>BCGW (WHSE_WILDLIFE_MANAGEMENT.WCP_WILDLIFE_HABITAT_AREA_POLY)</td>
<td>2005</td>
<td>2014</td>
</tr>
<tr>
<td>Water Intakes for Community Watersheds</td>
<td>BCGW (WHSE_WATER_MANAGEMENT.BCHA_DRNKNG_WATR_EXTR_SITES_SP)</td>
<td>2006</td>
<td>2014</td>
</tr>
<tr>
<td>Species and Ecosystems at Risk (non sensitive)</td>
<td>BCGW (WHSE_TERRESTRIAL_ECOLOGY.BIOT_OCCR_NON_SENS_AREA_SVW)</td>
<td>2011</td>
<td>2016</td>
</tr>
</tbody>
</table>

5.2 Forest Inventory

Aerial photography for most of the current forest inventory was taken in 1991 (Figure 8). However, the attributes associated with this inventory has been projected to January 1, 2014. The Vegetation Resource Inventory Management System (VRIMS) is also used to update the original inventory. In this process, new harvest and free-growing data are extracted from the Reporting Silviculture Updates and Land status Tracking System (RESULTS), verified and integrated into the Vegetation Resources Inventory (VRI).
New air photos for the Merritt TSA were flown in 2015. These will be used for interpreting a new VRI Phase 1 inventory; tentatively scheduled to be completed by 2018.

![Inventory reference year for the Merritt Timber Supply Area](image)

Figure 8 Inventory reference year for the Merritt Timber Supply Area

5.3 Predictive Ecosystem Mapping

Predictive Ecosystem Mapping has been completed for the Merritt TSA and is incorporated into the Provincial Site Productivity Layer. Although the primary use of this data is to provide site index information for generating yield tables for timber supply analyses, there may also be utility for other
aspects of this project. Potential examples include silviculture treatment planning and development of a reserve strategy.

5.4 Allowable Annual Cut

5.4.1 Historic AAC

In 1996, the chief forester established an allowable annual cut (AAC) of 1,454,250 m³/year for the Merritt TSA, including a 250,000 m³/year partition attributable to small-diameter pine stands.

The AAC was later increased to 2,004,250 m³/year in 1999 to allow for the salvage of timber damaged in the 1998 Lawless Creek Wildfire and a MPB infestation. The 250,000 m³/year partition for small-diameter pine was continued.

By 2002, most of the economically-viable damaged timber had been salvaged and the AAC was reduced to 1,508,050 m³/year. At this time, the small-diameter pine partition was increased to 312,500 m³/year.

In 2004, work undertaken through the IFPA supported an AAC increase of 330,700 m³/year to 1,838,750 m³/year. The 312,500 m³/year small-diameter pine partition was continued.

The AAC was increased again to 2,814,171 m³/year in 2005 to address the MPB epidemic underway in the TSA. The small-diameter pine partition was maintained at 312,500 m³/year.

By 2010, the MPB epidemic in the Merritt TSA had peaked and the volume of beetle-killed pine was decreasing. As a result, the chief forester decreased the AAC to 2,400,000 m³/year. This AAC included a partition that limited the harvest of non-pine species volume to a maximum of 720,000 m³/year (30%).

Within partition, the chief forester expected that about two-thirds would be incidental non-pine harvest resulting from the salvage of MPB stands. The remaining third was expected to come from stands damaged by spruce beetle. The partition was intended to conserve non-pine species volume, while providing licensees with an opportunity to salvage the remaining dead pine. At this time the small-diameter pine partition was discontinued.

In 2013, the Regional Executive Director for the Thompson Okanagan Region determined an IFPA AAC of 373,000 cubic metres for three years. This AAC was considered to be within the Merritt TSA AAC of 2.4 M m³/year determined by the chief forester.

Table 5 provides the AAC apportionment based on this AAC.

Table 5 AAC apportionment as of September, 2015

<table>
<thead>
<tr>
<th>Forest License Type</th>
<th>Total AAC (m³/year)</th>
<th>%</th>
<th>Conventional AAC (m³/year)</th>
<th>%</th>
<th>Non-Pine Species AAC (m³/year)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Licensees – Replaceable</td>
<td>920,605</td>
<td>38.36</td>
<td>644,425</td>
<td>38.36</td>
<td>276,180</td>
<td>38.36</td>
</tr>
<tr>
<td>Forest Licensees – Non-Replaceable</td>
<td>974,486</td>
<td>40.60</td>
<td>682,140</td>
<td>40.60</td>
<td>292,346</td>
<td>40.60</td>
</tr>
<tr>
<td>BC Timber Sale – Licence</td>
<td>389,520</td>
<td>16.23</td>
<td>272,664</td>
<td>16.23</td>
<td>116,856</td>
<td>16.23</td>
</tr>
<tr>
<td>Community Forest Agreement</td>
<td>20,000</td>
<td>0.83</td>
<td></td>
<td></td>
<td>20,000</td>
<td>2.78</td>
</tr>
<tr>
<td>Forest Service Reserve</td>
<td>95,389</td>
<td>3.97</td>
<td>80,771</td>
<td>4.81</td>
<td>14,618</td>
<td>2.03</td>
</tr>
<tr>
<td>Total</td>
<td>2,400,000</td>
<td>100</td>
<td>1,680,000</td>
<td>100</td>
<td>720,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Merritt TSA apportionment and commitments report of 2015/06/03

5.4.1 2015 Timber Supply Review and Future AAC

Although a new AAC determination was not due until December 2, 2020 under current legislation, a new Timber Supply Review was undertaken in 2015. Licensees are focused salvaging dead pine from pine-leading stands and only about 2.5 M m³ of dead pine is estimated to remain on the THLB; dispersed
throughout stands that include significant volumes of live timber. As a result, the chief forester concluded that there was an urgent need to re-examine the timber supply of the Merritt TSA.

The Merritt Timber Supply Area Timber Supply Analysis Discussion Paper was released in July 2015, and comments were accepted until September 23, 2015. The discussion paper includes a base case harvest scenario and two alternate harvest scenarios. The base case uses the maximum initial harvest level that can be sustained without decreasing anytime in the future. Under this base case, the harvest level for the first 50 years is 1.16 M m³/year (48.3% of current AAC), increasing to 1.34 M m³/year for another 30 years, and then stabilizing at 1.50 M m³/year (Figure 9).

In the first alternative forecast (Figure 10), the initial harvest level was set at 2.0 M m³/year for five years. After five years the harvest level decreases to 1.08 M m³/year, a level that is about seven percent lower than in the base case. This level is maintained for 45 years before the harvest level begins to increase to the same long-term level as in the base case (1.50 M m³/year).

In the second alternative forecast (Figure 11), the initial harvest level is set at 1.50 M m³/year - approximately the same level as in 2002. After five years the harvest level decreases to 1.13 M m³/year, about three percent lower than in the base case. This level is maintained for 45 years before the harvest level begins to increase to the same long-term level as the base case.

![Figure 9 Base case forecast for the Merritt TSA 2015 Timber Supply Review](image)
5.4.2 Current AAC

On March 30, 2016 the AAC was set to 1.5M m³ per year for a period of five years. On March 30, 2021, the AAC will drop to 1.2 M m³ per year until a new AAC is determined, which must occur by March 30, 2026. The apportionment for the current AAC has not been released yet.
5.4.3 AAC Determinations of Innovative Forest Practices Agreement

As mentioned in section 2.9, four forest licensees with IFPAs work collaboratively through the NSIFS to develop and implement a consistent forestry plan to support AAC increase applications. Since 2004, the NSIFS has submitted three AAC increase applications that required determination by the Regional Executive Director.

In 2004, an IFPA uplift of 330,700 m³/year was awarded for the period January 1, 2004 to December 31, 2007. This uplift was in recognition of a wide scope of innovative projects ranging from updating inventory and growth and yield information to mapping wildlife capability and First Nations’ values.

On March 30, 2005 NSIFS made application for a further 500,000 m³/year increase, based on innovative forestry practices that enhance efforts to suppress the MPB infestation. The determination (July 13, 2005 to December 31, 2007) confirmed the 330,700 m³/year previously awarded plus an increase of 500,000 m³/year to salvage MPB.

In 2013, the Regional Executive Director made another determination to extend the IFPA and award 373,000 m³/year to the IFPA holders for the period January 1st, 2013 to December 31st, 2015. This volume was considered to be within the existing AAC of 2,400,000 m³/year determined by the Chief Forester.

5.4.4 Harvest Performance

Unlike some other areas in the province, the Merritt TSA fully harvested the allowable annual cut during the period from 2007 to 2009 when the sudden crash of the US housing market drastically reduced the demand for wood products. During this three year period, approximately 9.06 M m³ was harvested, compared to the allowable annual cut of approximately 8.44 M m³.

Data from the FLNRO’s Harvest Billing System (Table 6) shows that approximately 16.1 M m³ of timber was harvested between January 1, 2010 to August 31, 2015 and the 70% target for lodgepole pine was achieved. The allowable annual cut during this period was approximately 14.0 M m³, which indicates there are no issues with harvesting performance in the TSA. Although the harvest exceeds the AAC for the period shown in the table, it is within the flexibility allowed by the Cut Control Regulation which is based on five year periods. It is also apparent that the annual harvest has been decreasing with approximately 2.2 M m³ harvested in 2014.

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015 to August 31</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC (m³)</td>
<td>2,814,171</td>
<td>2,400,000</td>
<td>2,400,000</td>
<td>2,400,000</td>
<td>2,400,000</td>
<td>1,600,000</td>
<td>14,014,171</td>
</tr>
<tr>
<td>Harvest Volume (m³)</td>
<td>3,664,777</td>
<td>3,231,429</td>
<td>2,749,882</td>
<td>2,493,548</td>
<td>2,221,530</td>
<td>1,735,984</td>
<td>16,097,150</td>
</tr>
<tr>
<td>Lodgepole Pine (%)</td>
<td>74.6%</td>
<td>72.2%</td>
<td>72.1%</td>
<td>69.4%</td>
<td>71.2%</td>
<td>61.8%</td>
<td>71.0%</td>
</tr>
<tr>
<td>Spruce (%)</td>
<td>15.6%</td>
<td>17.2%</td>
<td>16.6%</td>
<td>18.2%</td>
<td>17.6%</td>
<td>19.8%</td>
<td>17.2%</td>
</tr>
<tr>
<td>Balsam (%)</td>
<td>5.0%</td>
<td>4.4%</td>
<td>6.8%</td>
<td>8.6%</td>
<td>7.4%</td>
<td>8.4%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Fir (%)</td>
<td>3.5%</td>
<td>2.5%</td>
<td>4.0%</td>
<td>3.4%</td>
<td>3.7%</td>
<td>9.3%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Other Conifer (%)</td>
<td>1.3%</td>
<td>1.8%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>0.6%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Source: Harvest Billing System

5.4.5 Existing License Commitments

Compared to the AAC apportioned (Table 5), 68% of the AAC is currently committed (Table 7) to volume-based tenure holders within the Merritt TSA. Three of the six replaceable forest licences (Aspen Planers
Ltd., Tolko Industries Ltd., Weyerhaeuser Company Ltd.) operate processing facilities, while two others (Stuwix Resources Ltd. and Lower Nicola Indian Band) primarily sell the timber they harvest.

Source: Merritt TSA apportionment and commitments report of 2015/06/03

Table 7 Annual license commitments in the Merritt TSA

<table>
<thead>
<tr>
<th>Licensee Code</th>
<th>Licensee Name</th>
<th>Total Volume m³</th>
<th>Conventional Volume m³</th>
<th>Non AAC Lump Sum Volume m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A18039</td>
<td>Ardew Wood Products</td>
<td>50,020</td>
<td>50,020</td>
<td></td>
</tr>
<tr>
<td>A18695</td>
<td>Aspen Planers</td>
<td>158,854</td>
<td>158,854</td>
<td></td>
</tr>
<tr>
<td>A18696</td>
<td>Tolko</td>
<td>165,475</td>
<td>165,475</td>
<td></td>
</tr>
<tr>
<td>A18697</td>
<td>Tolko</td>
<td>103,730</td>
<td>103,730</td>
<td></td>
</tr>
<tr>
<td>A18698</td>
<td>Weyerhaeuser</td>
<td>519,871</td>
<td>519,871</td>
<td></td>
</tr>
<tr>
<td>A65006</td>
<td>Stuwix Resources</td>
<td>206,100</td>
<td>206,100</td>
<td></td>
</tr>
<tr>
<td>A74911</td>
<td>Tolko</td>
<td>125,000</td>
<td>125,000</td>
<td></td>
</tr>
<tr>
<td>A88928</td>
<td>Lower Nicola</td>
<td>51,246</td>
<td>51,246</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,380,296</td>
<td>1,380,296</td>
<td></td>
</tr>
<tr>
<td>A82441</td>
<td>Siska</td>
<td></td>
<td>9,800</td>
<td></td>
</tr>
<tr>
<td>A84349</td>
<td>Coldwater</td>
<td></td>
<td>24,084</td>
<td></td>
</tr>
<tr>
<td>A84350</td>
<td>Nooaitch First Nation</td>
<td></td>
<td>10,069</td>
<td></td>
</tr>
<tr>
<td>A84497</td>
<td>Upper Nicola</td>
<td>25,000</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>A84498</td>
<td>Princeton Post and Rail</td>
<td>35,000</td>
<td>35,000</td>
<td></td>
</tr>
<tr>
<td>A84499</td>
<td>Ardew Wood Products</td>
<td>25,000</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>A84506</td>
<td>Aspen Planers</td>
<td>25,000</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>A85191</td>
<td>Coldwater</td>
<td></td>
<td>17,226</td>
<td></td>
</tr>
<tr>
<td>A85451</td>
<td>Shackan</td>
<td>15,000</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>A85452</td>
<td>Siska</td>
<td>24,000</td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>A86066</td>
<td>Nooaitch First Nation</td>
<td>84,000</td>
<td>84,000</td>
<td></td>
</tr>
<tr>
<td>A86085</td>
<td>Coldwater</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>A87237</td>
<td>Shackan</td>
<td>6,063</td>
<td>6,063</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>259,063</td>
<td>259,063</td>
<td>61,179</td>
</tr>
<tr>
<td>Total Annual Commitments</td>
<td></td>
<td>1,639,359</td>
<td>1,639,359</td>
<td>61,179</td>
</tr>
</tbody>
</table>

While operating areas are not legally defined, a well-respected informal agreement exists to identify specific geographical areas where each licensee operates (Figure 12). Licensees have already indicated a desire to renegotiate these operating areas shortly after the TSR 2015 is determined.
Figure 12 Licensee Operating Areas for the Merritt Timber Supply Area
5.5 MPB Impacts

The MPB infestation in the Merritt TSA increased dramatically in 2004, reached a peak in 2007, and then declined sharply until 2011 (section 2.3). The 2015 Timber Supply Review public discussion paper has indicated that only about 2.5 million m³ of dead pine remain on the THLB; dispersed throughout stands that include significant volumes of live timber.

5.5.1 Beetle Killed Pine and “Shelf Life”

A mill’s ability to utilize MPB-killed logs is determined by the loss of volume attributed to dead trees and decay beyond merchantability (shelf life). This volume loss is considered defect or cull volume that is not included in the appraisal and is not accounted for cut control purposes. Following MPB attack, the wood fibre of the dead trees continually gets drier, more brittle and begins to rot at the base of the tree. This has a negative impact on both costs and revenues where:

1. “non-sawlog” timber must be left in the woods and merchantable stands are located farther away from the mills;
2. lumber recoveries drop with increasing wastage due to rot and checks;
3. milling becomes more difficult (e.g., more saw changes, clog-ups, breakage and wood dust); and
4. lumber grade yields decline.

In the last TSR 4, an “age since death” function was developed by the NSIFS licensee group to predict merchantable net pine volume over a period of 32 years, after which the volume would be zero (Figure 13).

![Figure 13](Image)

Figure 13 Shelf-life by grade proportion and merchantable net volume

Source: Merritt TSA Timber Supply Review #4 Timber Supply Analysis Report, April 28, 2010

To model the shelf life of the dead pine component, the TSR 2015 used the same merchantable net volume line developed for TSR 4 but applied the following shelf life function to reduce volumes at various ages beyond the year of attack (i.e., dead volume is reduced according to this shelf life function; a mathematical representation of the merchantable net volume line portrayed in Figure 13):
(equation 1) \[\text{useable_dead_conifer_vph} = \text{initial_dead_vph} \times \text{useable_dead_pct}\]

where

(equation 2) \[\text{useable_dead_pct} = 0.9 - (0.0281 \times \text{yrs_since_death})\]

Source: TSR 2015 Technical Report

5.5.2 MPB Attack in Young Stands

In the years following TSR 4, the amount of MPB infestation within young stands was dramatically less than originally projected at the time of TSR 4. An analysis of young pine impacts using provincial aerial overview survey data indicates that 588.5 hectares of the 39,464 hectares (1.5%) of pine leading age class 2 and 3 stands within the THLB had severe and very severe impact levels, and are therefore assumed to be dead.

Source: Merritt TSR Data Package Draft Factor 46 – Young Pine Stands and MPB, 2014

A summary of the young stand monitoring completed for the TSA (FLNRO 2015) found that 12.4% of the lodgepole pine trees/hectare and 12.8% of the lodgepole pine basal area was affected by insect attack. There was also significant damage from other forest health agents. This report recommends that forest health specialists and growth and yield specialists should review and analyze the severity data to determine potential impacts.

The TSR 2015 technical report (FLNRO 2015) indicates that growth and yield impacts of MPB were not modelled for managed stands (i.e. less than 30 years).

Source: Merritt TSA Ground Sample Data Analysis Young Stand Analysis, March 2015

5.5.3 Regeneration in Unsalvaged MPB-attacked stands

While harvested MPB-attacked stands will be regenerated, there will be some impacted areas that will not be developed and replanted prior to the stand exceeding its shelf life. It is important to verify the degree of natural regeneration expected to occur within these stands to determine the effect this will have on mid-term timber supply and on the recovery of non-timber values, such as watershed health. Most mature pine stands will have some degree of advanced regeneration as an understory and some pine will regenerate from natural seed, but it will be necessary to assess these stands from an inventory standpoint. For example, the species composition of unsalvaged stands may change significantly as the existing understory may be dominated by shade-tolerant species (e.g., spruce and balsam), which will then become the dominant species. Depending on the condition of these stands, one potential strategy to mitigate timber supply may be to rehabilitate and reforest these stands.

5.5.4 Future Dependency on Non-pine Leading Stands

Expected losses within MPB-attacked stands and the current concentration of harvest in pine stands will focus harvesting of stands with non-pine leading species throughout the mid-term period. These ‘green’ stands will be subject to significant pressures as providing both timber and non-timber values. Many MPB-attacked stands remaining will lose key attributes for wildlife habitat (e.g., closed-canopy sheltering) that will result in wildlife dependence on the same (non-pine leading) stands targeted for the mid-term timber supply.

Other implications to the forest product sector will include a distinct switch in species in final products. Markets currently used to a high percentage of pine in lumber marketed as “SPF” lumber will be comprised of a much higher proportion of spruce and fir in the future. There will also be an increase in the processing of non-SPF species such as Douglas-fir. Overall grade recovery and productivity should
increase as less old and degraded pine enters the mills. The change in species composition will also affect pulp products as much of the pine harvested at the end of the salvage period will be considerably downgraded in fibre quality. Switching to non-pine leading stands will produce a significant increase in chip quality; more gradually than the change in lumber as the dead pine may remain suitable for pulping longer than for lumber.

5.5.5 MPB Effect on Age Class Distribution

Elevated harvest levels since 2004 have resulted in a shift from a predominantly old forest to a predominantly young forest. Figure 14 shows a significant amount of forest less than 29 years of age which will become available for harvest again over a common period. It will be necessary to explore ways to break up this age class group (e.g., fertilization to lower minimum harvest age, or explore the use of extended rotations with the possibility of a commercial thinning entry) to reduce the risk of future MPB outbreaks.

The distribution of these young stands across a full range of sites will lead to some degree of variation in their natural rotation age, or culmination. Surveys of the regenerating stands will be required to determine the future pattern of maturing stands.
The main non-MPB forest health factors affecting the Merritt TSA are spruce bark beetle (SBB), western spruce budworm (WSBW), balsam bark beetle (BBB), and fire. Other forest health factors such as Douglas-fir bark beetle are present but generally have minimal impacts and insignificant management applied. Table 8 provides a summary of impacted hectares identified on the provincial aerial overview surveys from 2004 to 2013.
Table 8 Impacted Hectares from Provincial Aerial Overview Survey (PAOS) in the Merritt TSA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WSBW</td>
<td>52,014</td>
<td>61,934</td>
<td>170,339</td>
<td>125,043</td>
<td>84,504</td>
<td>135,395</td>
<td>112,703</td>
<td>34,982</td>
<td>91,795</td>
<td>1,678</td>
</tr>
<tr>
<td>SBB</td>
<td>9</td>
<td>179</td>
<td>26</td>
<td>259</td>
<td>200</td>
<td>1,560</td>
<td>263</td>
<td>418</td>
<td>871</td>
<td>866</td>
</tr>
<tr>
<td>BBB</td>
<td>2,835</td>
<td>8,564</td>
<td>9,957</td>
<td>13,902</td>
<td>6,931</td>
<td>5,574</td>
<td>2,901</td>
<td>3,614</td>
<td>9,217</td>
<td>10,351</td>
</tr>
<tr>
<td>Fire</td>
<td>200</td>
<td>150</td>
<td>5,516</td>
<td>352</td>
<td>193</td>
<td>885</td>
<td>147</td>
<td>180</td>
<td>591</td>
<td>181</td>
</tr>
<tr>
<td>DFBB</td>
<td>35</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>38</td>
<td>49</td>
<td>70</td>
<td>65</td>
</tr>
</tbody>
</table>

Source: Merritt TSR Data Package – 2014 Factor 42 – Forest Health Management – Non-MPB

5.6.1 Spruce Bark Beetle

A landscape level outbreak of spruce bark beetle was recognized as a concern by the Chief Forester in his 2010 TSR 4 AAC determination through the expectation that approximately 240,000 m³/year would be directed to spruce bark beetle salvage.

The 2014 TSR Data Package indicates that this infestation has subsided and that licensees have harvested or addressed all of the significantly impacted polygons greater than 15 hectares. Licensees reported that between 2011 and 2013, 376,599 m³ of harvested volume was directed at spruce bark beetle. Remaining spruce-leading polygons less than 15 hectares will be addressed as broader areas are prioritized for pine harvest. Dead spruce trees within these polygons will likely be unrecoverable at the time of harvest so these spruce volumes were accounted for through non-recoverable losses.

5.6.2 Balsam Bark Beetle

In BC, western balsam bark beetle (Dryocoetes confusus) is the most significant damaging agent of its primary host, mature sub-alpine fir. This bark beetle and an associated pathogenic fungus is responsible for significant tree mortality in high elevation ecosystems. More commonly, less than 5% of a stand is killed in one year.

While Table 8 indicates a significant area of infestation, it is consistently weighted heavily to the trace and light infestation levels. Since the harvest through the mid-term will depend increasingly on balsam stands, it may be necessary to further evaluate the impact of balsam bark beetle.

5.6.3 Western Spruce Budworm

Western spruce budworm (Choristoneura occidentalis) is the primary defoliator of concern for interior Douglas-fir in the Merritt TSA (FLNRO 2013). Outbreaks of this budworm cause significant damage through larval feeding on the foliage, resulting in damaged cones and reduced seed production, growth loss, top kill, formation of stem deformities and even mortality, particularly in the understory. The IDF biogeoclimatic zone, which covers nearly half of the TSA, is a high hazard zone for western spruce budworm in Douglas-fir stands where high infestation levels have already occurred (Table 8).

Approximately eight outbreaks of western spruce budworm have been recorded in the southern interior of BC since 1916 with over 1.6 M hectares defoliated. In 2012, portions of an outbreak were treated with Bacillus thuringiensis var. kurstaki (B.t.k.) - the preferred insecticide treatment for budworm in BC.

5.6.4 Fire

Past fires are accounted for through depletion updates to the forest inventory. The impact of future fires on timber supply is accounted for through the allowance for non-recoverable losses.

In 2012, FLNRO’s Wildfire Management Branch prepared a Discussion Paper on Proactive Wildfire Threat Reduction. This discussion paper indicated that there will be more wildfire potential over time.
resulting from MPB killed stands and rapidly increasing effect of climate change. Based on an increase of 4°C by 2080, severe future wildfire conditions are predicted for the southern interior of BC, including:

- increased fire size, more than doubled the average of 7,961 hectares to 19,076 hectares;
- increased fire severity by 40% in spring, 95% in summer, and 30% in fall;
- increase fire season length and fire frequency by 30%;
- increase in crown fire ignition and severe fire behaviour by 4 to 7%; and
- a decrease in extent of fire free areas by 39%.

The discussion paper referenced landscape fire planning and management as a way of mitigating impacts of extreme wildfire events and associated losses of communities, critical infrastructure and natural resource values. The objective of landscape fuel and fire management is to stop the development of extreme “mega” fires by creating landscape level fuel breaks. This can be accomplished by modelling wildfire risk and threat; analysing land management options; and, creating landscape level fuel breaks through targeted harvesting, establishing linear fuel breaks, and, utilizing alternative silviculture practices. Often, even simple management actions such as widening road right-of-ways or realigning cut block patterns can have significant beneficial effects of mitigating extreme wildfire behaviour. These activities can also support local employment creation, provide harvest opportunities, protect mid-term timber supply, and support other key programs such as ecological restoration and the emerging biofuel economy in BC.

A Fire Management Plan for the Merritt TSA was recently completed; consisting of two main sections. The first section, *Integrating Resource Management into Fire Response*, provides concise information needed for wildfire response and is intended primarily for use by those involved in wildfire response. It includes an overview of land management direction, overview of the four fire management value themes, and fire suppression response zones and recommendations.

The second section, *Integrating Wildfire into Resource Management – Landscape FMP* contains information that will be relevant for this ISS project including:

- A brief overview of the plan area in terms of geographic extent, climate, and fire history.
- Fire Hazard and Risk Analysis.
- Fire Management Unit Objectives.
- Fuel Management and treatment recommendations.

Of particular interest, draft landscape fuel breaks have been mapped for the Merritt TSA, but desired fuel conditions have not yet been achieved. The plan recommends reducing the amount of coarse woody debris on harvested areas within these firebreaks through site preparation treatments such as broadcast burning or pile and burning. It also recommends that where industrial roads have been identified for the fuel breaks, a 10 metre fuel free zone and additional 30 metre zone with minimal surface fuels and modified stocking standards be established within both sides of the running surface.

The Fire Management Plan also reference areas within the Wildland Urban Interface (WUI) that should be considered for fuel management treatments, as identified within Community Wildfire Protection Plans (CWPP) that have been completed to date.
5.7 Protecting Secondary Structure

Section 43.1 of the Forest and Range Practices Act, Forest Planning and Practices Regulation, *Secondary structure retention in MPB affected stands*, requires forest licensees to protect secondary structure (understory advanced regeneration and non-pine canopy trees) in MPB affected areas.

Considerable variation in secondary stand structure exists among different lodgepole pine stands. In their recent study to determine the proportion of Biogeoclimatic Ecosystem Classification (BEC) units considered to be in poor condition and hence likely to recover slowly from a timber supply perspective, Coates and Sachs (2012) reached the following conclusions for pine leading stands:

1. Generalizations about secondary structure abundance based solely on pre-beetle dominance are too crude since understory, sub-canopy and canopy secondary structure post-beetle can vary widely at any level of pine dominance.

2. ESSF and ICH zones pose few problems for recovery while MPB-impacted stands in the SBS zone pose the greatest risk.

Based on 3,823 plots examined, Coates and Sachs (2012) further predicted the natural recovery of pine leading stands, as shown in Table 9.

<table>
<thead>
<tr>
<th>BEC Unit</th>
<th>Suggested % range of predicted natural recovery (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBS</td>
<td>58-68</td>
</tr>
<tr>
<td>MS</td>
<td>76-86</td>
</tr>
<tr>
<td>SBPS</td>
<td>78-88</td>
</tr>
<tr>
<td>IDF</td>
<td>75-85</td>
</tr>
<tr>
<td>ESSF</td>
<td>92-100</td>
</tr>
<tr>
<td>ICH</td>
<td>90-100</td>
</tr>
<tr>
<td>BWBS</td>
<td>80-100</td>
</tr>
<tr>
<td>Total</td>
<td>70-80</td>
</tr>
</tbody>
</table>

+/-5% tolerance used around calculated means except for ICH and BWBS where +/-10% used given low # of plots

It will be important to get a clear understanding of the regeneration that exists within unharvested stands to predict their eventual contribution to timber supply. Stands with good stocking of advanced regeneration may be available to contribute to later in the mid-term. Generating new inventory information for these stands is a considerable challenge.

5.8 Minimum Harvestable Volume

TSR 2015 used minimum harvestable volume criteria as outlined in Table 10. The minimum harvest volume of 150 m³/hectare was derived by considering the historical harvest data provided by BC Timber Sales, Weyerhaeuser, and Tolko. The minimum volume per tree criteria did not limit projected timber supply since stands reached 0.2 m³/tree by the time they reached 150 m³/hectare.

While reducing the minimum harvest volume may increase the mid-term AAC, it must be supported by a demonstrated change in licensee behaviour.
Table 10 Minimum Harvest Criteria

<table>
<thead>
<tr>
<th>Stand type</th>
<th>Minimum merchantable volume (m³/ha)</th>
<th>Minimum volume per tree (m³)</th>
<th>Minimum age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even-aged Natural</td>
<td>150</td>
<td>0.2</td>
<td>N/A</td>
</tr>
<tr>
<td>Even-aged Managed</td>
<td>150</td>
<td>0.2</td>
<td>60</td>
</tr>
<tr>
<td>Uneven-aged dry belt fir</td>
<td>120*</td>
<td>0.2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* although the minimum is 120 m³/ha only half is removed upon entry.

Source: TSR 2015 Technical Report

5.9 Dry-Belt Fir

For purposes of TSR 2015, dry-belt fir was defined as all Douglas-fir leading, south facing polygons within the IDF and PP biogeoclimatic zones, with the exception of stands above 1200 metres in the IDFdk subzone. Dry-belt fir stands are a source of uncertainty since, as a result of harvesting being directed towards the salvage of pine, there has not been any significant harvesting within these stands for a number of years.

It is not known how successfully these stands can be managed using clearcut silviculture systems. In the TSR, 20% of the harvest was modelled as a traditional clearcut with reserve silvicultural system, while the other 80% was modelled as a single tree selection silviculture system. For the selection system, it was assumed that 50% of the basal area would be removed. The stand would then be left to regenerate naturally and the next entry occurring sometime after the volume recovers to a minimum harvestable level (i.e., 120 m³/hectare).

This is an area where linkages of specific treatment regimes that match stand characteristics would provide a more robust understanding of the future within this unit. The ISS project provides an opportunity to inform direction for more robust management of the dry-belt fir zone.

Source: TSR 2015 Technical Report

5.10 Harvest Capacity

There are no issues identified with respect to having capacity to harvest the AAC in the short term. AACs in the Merritt TSA and adjacent TSAs have been fully harvested in recent years, and the projected future harvest is expected to decline in Merritt and adjacent southern interior TSAs.

5.11 Haul Distances

Unlike some larger TSAs, haul distances in the Merritt TSA are not a major factor in determining a stand’s economic operability over a business cycle. However, fluctuations in market conditions will affect economic operability of certain stands at a given point in time.
6 Timber Quality

Timber quality in the TSA is variable, and includes significant volumes of small diameter pine and pine degraded as a result of the MPB infestation.

Silviculture strategies completed to date for the Merritt TSA (section 2.9) have focused on achieving timber quantity objectives and have not substantially addressed timber quality. Consequently, timber quality objectives have not been identified as a priority for the TSA within the 2015/16 to 2017/18 Land Based Investment Strategy. Opportunities exist to explore product flow objectives to address log quality from future stands.

6.1 Small Diameter Pine

As mentioned in section 5.4.1, a small diameter pine partition of 250,000 m³/year was established in 1996, increased to 312,500 m³/year in 2002, and then dropped altogether in 2010.

Table 11 provides a summary of the small wood volume harvested between 2005 and 2013. It is estimated that approximately 7.2 M m³ (64,200 hectares) of small wood is currently available within the Merritt TSA.

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume of Smallwood (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>276,869</td>
</tr>
<tr>
<td>2006</td>
<td>192,622</td>
</tr>
<tr>
<td>2007</td>
<td>292,956</td>
</tr>
<tr>
<td>2008</td>
<td>389,987</td>
</tr>
<tr>
<td>2009</td>
<td>189,295</td>
</tr>
</tbody>
</table>

Source: Merritt TSR Data Package – 2014 Factor 06 Smallwood

6.2 Grade 4 (Lumber Reject)

Section 17 (6) of the Cut Control Regulation allows licensees to reduce the volume attributed to a licence for 100% of the Grade 4 (i.e. Lumber reject) if the timber is sold or delivered to an appropriate facility. One indication of timber quality in the Merritt TSA is the amount of Grade 4 credit removed from cut control (Table 12).

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade 4 Volume Harvested (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>27,278</td>
</tr>
<tr>
<td>2008</td>
<td>107,606</td>
</tr>
<tr>
<td>2009</td>
<td>126,2014</td>
</tr>
<tr>
<td>2010</td>
<td>267,952</td>
</tr>
<tr>
<td>2011</td>
<td>266,352</td>
</tr>
<tr>
<td>2012</td>
<td>292,075</td>
</tr>
</tbody>
</table>

While some of the volume increase between 2007 and 2012 is likely due to improved economic conditions, these numbers provide an indication of the quality degradation resulting from the significant harvest of MPB infested timber. Grade 4 volume harvested is expected to decrease as harvest transitions into non-pine stands.

Source: Merritt TSR Data Package – 2014 Factor 97 Grade 4 Credit
7 Species Habitat

7.1 Species At Risk

In considering habitat supply, it is important to identify the environmental values potentially at risk from MPB, wildfires and/or harvesting. Table 13 to Table 16 show the species at risk and red and blue listed species for the Merritt TSA. These tables were generated from data exported from the Ministry of Environment BC Species and Ecosystems Explorer. As these data cannot be queried directly for the Merritt TSA, it was assumed that species that were found in both the Cascades Forest District (i.e. Merritt and Lillooet TSAs) and either of the Okanagan-Similkameen or Thompson-Nicola Regional Districts would represent Merritt TSA species by eliminating any species specific to the Lillooet TSA.

To be included in the tables, the species need to meet at least one of the following criteria:

- BC Status is either “Red” or “Blue”
- COSEWIC status is Endangered (E), Threatened (T), or Special Concern (SC)
- SARA status is Endangered (E), Threatened (T), or Special Concern (SC)
- Migratory Bird Convention Act (MBCA) applies is Yes (Y)

Species that have been identified under the BC Identified Wildlife Management Strategy (IWMS) are also indicated in these tables. Although the IWMS includes the “Alkali Saltgrass Herbaceous Vegetation” plant community, it is unlikely to have overlap with forestry impacts. Note that additional SARA / COSEWIC status codes in the table include Not at Risk (NAR) and Data Deficient (DD). Although these codes do not meet the SARA / COSEWIC criteria for inclusion, they are in the table because the species meets one of the other inclusion criteria.

Table 13 Species at risk for the Merritt Forest District: Vertebrate Animals

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>English Name</th>
<th>Ident. Wildlife</th>
<th>BC List</th>
<th>COSEWIC</th>
<th>SARA</th>
<th>MBCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrocheilus alutaceus</td>
<td>Chisel Mouth</td>
<td>Blue</td>
<td>NAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeronautes saxatalis</td>
<td>White-throated Swift</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaxyrus boreas</td>
<td>Western Toad</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ardea herodias</td>
<td>Great Blue Heron, herodias subspecies</td>
<td>Y</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asaphus truei</td>
<td>Coastal Tailed Frog</td>
<td>Y</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Asio flammeus</td>
<td>Short-eared Owl</td>
<td>Y</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>Burrowing Owl</td>
<td>Y</td>
<td>Red</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Botaurus lentiginosus</td>
<td>American Bittern</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Buteo swainsoni</td>
<td>Swainson’s Hawk</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catostomus platyrhynchus</td>
<td>Mountain Sucker</td>
<td>Blue</td>
<td>SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordeiles minor</td>
<td>Common Nighthawk</td>
<td>Yellow</td>
<td>T</td>
<td>T</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Crotalus oreganus</td>
<td>North American Racer</td>
<td>Y</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Contopus Cooperi</td>
<td>Olive-sided Flycatcher</td>
<td>Blue</td>
<td>T</td>
<td>T</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Corynorhinus townsendii</td>
<td>Townsend’s Big-eared Bat</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottus hubisi</td>
<td>Columbia Sculpin</td>
<td>Blue</td>
<td>SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotalus oreganus</td>
<td>Western Rattlesnake</td>
<td>Y</td>
<td>Blue</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Cypselooides niger</td>
<td>Black Swift</td>
<td>Blue</td>
<td>E</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolichonyx oryzivorus</td>
<td>Bobolink</td>
<td>Blue</td>
<td>T</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Eremophila alpestris merrillii</td>
<td>Horned Lark, merrillii subspecies</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euderma maculatum</td>
<td>Spotted Bat</td>
<td>Y</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Euphagus carolinus</td>
<td>Rusty Blackbird</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14 Species at risk for the Merritt TSA: Invertebrate Animals

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>English Name</th>
<th>Ident. Wildlife</th>
<th>BC List</th>
<th>COSEWIC</th>
<th>SARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apodemia mormo</td>
<td>Mormon Metalmark</td>
<td>Red</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argia emma</td>
<td>Emma’s Dancer</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argia vivida</td>
<td>Vivid Dancer</td>
<td>Blue</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callaphrys affinis</td>
<td>Immaculate Green Hairstreak</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlosyne hoffmann</td>
<td>Hoffman’s Checkerspot</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicindela decemnotata</td>
<td>Badlands Tiger Beetle</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicindela hirticollis</td>
<td>Hairy-necked Tiger Beetle</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicindela pugetana</td>
<td>Sagebrush Tiger Beetle</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danaus plexippus</td>
<td>Monarch</td>
<td>Blue</td>
<td>SC</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Enallagma clausum</td>
<td>Alkali Bluet</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15 Species at risk for the Merritt TSA: Vascular Plants

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>English Name</th>
<th>BC List</th>
<th>COSEWIC</th>
<th>SARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium geyeri var. tenerum</td>
<td>Geyer’s Onion</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecurus carolinianus</td>
<td>Carolina meadow-foxtail</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemone drummondi var. drummondi</td>
<td>alpine anemone</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antennaria flagellaris</td>
<td>stoloniferous pussytoes</td>
<td>Red</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Atriplex argentea ssp. Argentea</td>
<td>silvery orache</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boechera cascadensis</td>
<td>littleleaf rockcress</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brickellia oblongifolia ssp. Oblongifolia</td>
<td>narrow-leaved brickellia</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitriche heterophylla var. heterophylla</td>
<td>two-edged water-starwort</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex bicolor</td>
<td>two-coloured sedge</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex hystericina</td>
<td>porcupine sedge</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex incurviformis var. incurviformis</td>
<td>curved-spiked sedge</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex rupestris ssp. Drummondiana</td>
<td>curly sedge</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex scopulorum var. bracteosa</td>
<td>Holm’s Rocky Mountain sedge</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex vallicola var. vallicola</td>
<td>valley sedge</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castilleja cusickii</td>
<td>Cusick’s paintbrush</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium atrovirens</td>
<td>dark lamb’s-quarters</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistanthe umbellate</td>
<td>Mount Hood pussypaws</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collomia tenella</td>
<td>slender collomia</td>
<td>Red</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Crepis modocensis ssp. rostrata</td>
<td>western low hawksbeard</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crepis occidentalis ssp. conjuncta</td>
<td>western hawksbeard</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crepis occidentalis ssp. pumila</td>
<td>gray hawk’s-beard</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptantha ambiguа</td>
<td>obscure cryptantha</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinium bicolor ssp. bicolor</td>
<td>Montana larkspur</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descurainia sophioides</td>
<td>northern tansymustard</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilobium halleanum</td>
<td>Hall’s willowerb</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilobium pygmaeum</td>
<td>smooth spike-primrose</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16 Species at risk for the Merritt TSA: Non-Vascular Plants and Lichens

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>English Name</th>
<th>BC List</th>
<th>COSEWIC</th>
<th>SARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythranthe breviflora</td>
<td>short-flowered monkey-flower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythranthe suksdorfii</td>
<td>Suksdorf’s monkey-flower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gayophyllum humile</td>
<td>dwarf groundsmoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hackelia diffusa var. diffusa</td>
<td>spreading stickseed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hornungia procumbens</td>
<td>ovalpurse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iva axillaris</td>
<td>poverty-weed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus confuses</td>
<td>Colorado rush</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptosiphon septentrionalis</td>
<td>northern linanthus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewisia columbiana var. columbiana</td>
<td>Columbia lewisia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewisia triphylla</td>
<td>three-leaved lewisia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomatium brandegee</td>
<td>Brandegee's lomatium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomatium triternatum ssp. Platycarpum</td>
<td>nine-leaved desert-parsley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus bingenensis var. subsaccatus</td>
<td>Suksdorf’s lupine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus sulphurus</td>
<td>sulphur lupine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsilea vestita</td>
<td>hairy water-clover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melica bulbosa</td>
<td>oniongrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melica spectabilis</td>
<td>purple oniongrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muhlenbergia racemosa</td>
<td>satin grass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotiana attenuate</td>
<td>wild tobacco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orobanche corymbosa ssp. Mutabilis</td>
<td>flat-topped broomrape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectocarya penicillata</td>
<td>winged combseed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus albicaulis</td>
<td>whitebark pine</td>
<td></td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Plagiobothrys leptocladus</td>
<td>finebranched popcornflower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa abbreviata ssp. pattersonii</td>
<td>abbreviated bluegrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa fendleriana ssp. Fendleriana</td>
<td>mutton grass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polemonium elegans</td>
<td>elegant Jacob’s-ladder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonum polygaloides ssp. Confertiflorum</td>
<td>close-flowered knotweed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonum polygaloides ssp. Kelloggii</td>
<td>Kellogg's knotweed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystichum kruckebergii</td>
<td>Kruckeberg’s holly fern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystichum scopulinum</td>
<td>mountain holly fern</td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Potentilla diversifolia var. perdissecta</td>
<td>diverse-leaved cinquefoil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentilla nivea var. pentaphylla</td>
<td>five-leaved cinquefoil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentilla paradoxa</td>
<td>bushy cinquefoil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilocarphus brevissimus var. brevissimus</td>
<td>dwarf woolly-heads</td>
<td></td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Pyrola elliptica</td>
<td>shinleaf wintergreen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus pedatifidus ssp. affinis</td>
<td>birdfoot buttercup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix boothii</td>
<td>Booth’s willow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senecio integerrimus var. ochroleucus</td>
<td>white western groundsel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganium fluctuans</td>
<td>water bur-reed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sporobolus compositus var. compositus</td>
<td>rough dropseed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stuckenia vaginata</td>
<td>sheathing pondweed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thelypodium laciniatum var. laciniatum</td>
<td>thick-leaved thelypody</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brachythecium holzingeri
Bryodendron eugyphylum columbianum
Bryum gemmiparum
Campylium radicale
Crossidium seriatum
Encalypta intermedia
Encalypta spathulata
Entosthodon rubiginosus
Funaria muhlenbergii
Physcomitrium pyriforme
Plagiochilus demissum
Platyhypnidium riparioides
Pterygoneurum kozlovii
Schistidium heterophyllum
Ulota curvifolia
Weissia brachycarpa

Source: Exported from the Ministry of Environment BC Species and Ecosystems Explorer at: http://a100.gov.bc.ca/pub/eswp/

Critical habitat for individual species can and has been designated under the Species at Risk Act (e.g. Williamson’s Sapsucker). In addition, specific strategies, including silviculture practices, can be employed to reduce risks to biodiversity, water, fish, wildlife and habitat (Manning et. al., 2006). These strategies focus on enhancing special habitat like riparian areas and maintaining landscape level biodiversity elements and ecological values.

Managing forest health and salvaging MPB increases road densities across the landscape, which can cause disproportionate impacts to species at risk. Given the vulnerability of forest-dependent species and large areas of MPB impacted timber, increased emphasis on managing these road impacts is warranted. The cumulative effects model includes layers for road density that could inform management of roads. Spatial and temporal modelling will be an important tool to ensure the opportunities can be realized without impacts to wildlife populations.

7.1.1 Recovery Planning

The goal of recovery planning is to help stop or reverse the decline of a species, and/or to reduce or remove threats to its long-term persistence in the wild. The first stage in recovery planning is development of a recovery strategy, which is a strategic, science-based document that provides advice on whether recovery is biologically feasible, and if so, what is required to achieve recovery. This may lead to development of management plans and/or action plans. Management plans set goals and objectives, and recommend approaches appropriate for species or ecosystem conservation. Action plans define and guide implementation of the recovery strategy, and include more detailed information about what needs to be done to meet the goals and objectives of the recovery strategy. Best management practices can also be developed.

Examples of recovery planning documents for some of the species at risk in the Merritt TSA include:

- Recovery strategy for Western Screech-Owl
- Recovery strategy for Lewis’s Woodpecker
- Recovery strategy for Williamson’s Sapsucker
- Best management practices for Williamson’s Sapsucker
- Management plan for Mountain Beaver
- Best management practices for Mountain Beaver
• Management plan for Flammulated Owl
• Management plan for Coast Tailed Frog

The full list of recovery planning documents for species at risk in British Columbia may be found at: http://www.env.gov.bc.ca/wld/recoveryplans/recovery_doc_table.html

7.2 Ungulate Winter Range

An Ungulate Winter Range (UWR) for mule deer, bighorn sheep, elk, and white-tailed deer, was established under the Government Action Regulation (GAR) Order # 3-003 (January 21, 2008 - Figure 15). This includes over 1,100 individual UWR planning cells within the Merritt TSA; each with its own target percentage of mature seral forest (age of 121 yrs+) based on the snow zone(s) for that planning cell. These planning cells are currently under review but it is not clear if, or when, any changes might be contemplated.

A UWR for mountain goat was established under GAR Order #3-006 (February 7, 2011 - Figure 15).

Moose habitat requirements are described through a notice given under Section 7(2) of the Forest Planning and Practices Regulation and Section 9(3) of the Woodlot License Planning and Practices Regulation.
Figure 15 Approved Ungulate Winter Ranges by Species in the Merritt TSA
7.3 **Wildlife Habitat Areas**

Table 17 summarizes the Wildlife Habitat Areas (WHA) established within the Merritt TSA. In addition to these approved WHAs, there are nine WHAs for Williamson’s Sapsucker totalling about 384 hectares occurring in the proposed WHA dataset.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>No Harvest Area (ha)</th>
<th>Conditional Harvest Area (ha)</th>
<th>Total Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Tailed Frog</td>
<td>17</td>
<td>204.4</td>
<td>166.3</td>
<td>370.7</td>
</tr>
<tr>
<td>Great Basin Spadefoot</td>
<td>1</td>
<td>45.1</td>
<td></td>
<td>45.1</td>
</tr>
<tr>
<td>Grizzly Bear</td>
<td>10</td>
<td>4,503.6</td>
<td></td>
<td>4,503.6</td>
</tr>
<tr>
<td>Lewis’s Woodpecker</td>
<td>4</td>
<td>38.9</td>
<td>37.8</td>
<td>76.7</td>
</tr>
<tr>
<td>Western Screech Owl</td>
<td>3</td>
<td>113.3</td>
<td>71.8</td>
<td>185.1</td>
</tr>
<tr>
<td>Williamson’s Sapsucker</td>
<td>56</td>
<td>2,178.2</td>
<td></td>
<td>2,178.2</td>
</tr>
<tr>
<td>Data Sensitive (snakes)</td>
<td>7</td>
<td>1,145.9</td>
<td>134.5</td>
<td>1,280.4</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>8,229.4</td>
<td>410.4</td>
<td>8,639.8</td>
</tr>
</tbody>
</table>

7.4 **Identified Wildlife Notices**

Notices of objectives for species at risk have been given under Section 7(2) of the Forest Planning and Practices Regulation (B.C. Reg. 14/04) for the following species:

1. Coastal Tailed Frog – 2,793 hectares not exceeding a mature THLB impact of 1,187 hectares
2. Great Basin Gopher Snake – 4,000 hectares not exceeding a mature THLB impact of 0 hectares
3. Flammulated Owl – 4,050 hectares not exceeding a mature THLB impact of 3,150 hectares
4. Interior Western Screech Owl – 44 hectares not exceeding a mature THLB impact of 22 hectares
5. Spotted Bat – 16 hectares not exceeding a mature THLB impact of 4 hectares
6. Grizzly Bear – 5,211 hectares within the Merritt TSA not exceeding a mature THLB impact of 521 hectares
8 Biodiversity

Maintenance of biodiversity in British Columbia involves both coarse filter and fine filter management. Coarse-filter conservation management is intended to maintain biodiversity on a broad scale by managing multiple habitats and species through provisions such as protected areas, parks, seral stage management, wildlife tree retention, and riparian area areas. Fine-filter management is intended to manage and conserve specific species and plant communities, particularly those that require special management that cannot be achieved through the coarse filter approach. Examples of fine filter management include wildlife habitat areas and general wildlife measures.

The magnitude of the MPB epidemic poses significant impacts to timber supply, with corresponding impacts to biodiversity and habitat supply. Retention strategies have been implemented at both the landscape level and the stand level to address biodiversity.

There may be opportunities to improve biodiversity in the mid- to long-term through treatments such as planting, thinning, road rehabilitation, and ecosystem restoration.

8.1 Landscape-level Retention

This section refers to general biodiversity and habitat management provisions not dealt with through higher level processes such as parks, ecological reserves, and specific wildlife habitat designations and their associated management zones. Landscape-level retention requirements in the Merritt TSA have been addressed through the Order Establishing Provincial Non-Spatial Old Growth Objectives that took effect in June 30, 2004. This order identifies the amount of old forest that will be maintained to address biodiversity values across the province by assigning biodiversity emphasis to landscape units and old forest targets for biogeoclimatic variants within each landscape unit. This assists in clarifying the amount of area available for timber harvesting.

A total of 114,467 hectares are specifically identified as non-legal Old Growth Management Areas (OGMAs) in the Merritt TSA, resulting in a net reduction to the THLB of 56,758 hectares. Through approved Forest Stewardship Plans (FSPs), licensees have committed to retain specific mapped polygons with provisions that allow, in some cases, for the replacement of identified polygons. Because multiple licensees can operate across the same land base, it is important to track, manage, and communicate these ongoing changes. As a result, the Cascades District has developed guidelines for managing a consolidated OGMA spatial database.

Source: Merritt TSR Data Package – 2014

8.2 Stand-Level Retention

MPB impacts are not limited to areas available for timber harvest. Timber reserved to protect sensitive species, riparian areas, wildlife tree patches, and OGMAs are also affected. Direct effects (increased mortality of pine, roads) and indirect effects (water quality/quantity and equivalent clear cut area), can impact these reserved areas. Landscape units with low biodiversity emphasis pose higher risks of loss for species diversity due to their reduced reserve areas. Species that are sensitive to changes in pine forest, or indirect impacts, will also be at higher risk - particularly from salvage operations within reserves designed to protect those species.

The management of stand level biodiversity improved in the Merritt TSA between 2005 and 2012. A major driver for this improvement was an increase in the amount and quality of coarse woody debris left on harvested areas. Opportunities for improvement include:
1. continue retaining large snags, large diameter trees and the full range of tree species in densities similar or greater than pre-harvest conditions;
2. look for opportunities to leave large patches of 2 hectares or greater; and
3. retain higher densities of big, coarse woody debris pieces (>= 10 metres long and 20 cm diameter) in harvest areas.

Source: FLNRO 2013, FREP MVRA report

Stand level biodiversity values are addressed in licensee FSPs through minimum wildlife tree retention levels for each biogeoclimatic zone where harvesting occurs. Licensees have committed to an overall retention level of 4% across the landbase, distributed across the biogeoclimatic zones (Table 18). These percentages are typically applied at the cutting permit level, with levels varying for individual cutblocks.

<table>
<thead>
<tr>
<th>Biogeoclimatic Zone</th>
<th>Percent of Forested Land Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSF</td>
<td>4.5%</td>
</tr>
<tr>
<td>MS</td>
<td>3.0%</td>
</tr>
<tr>
<td>IDF</td>
<td>7.0%</td>
</tr>
<tr>
<td>PP</td>
<td>17.0%</td>
</tr>
<tr>
<td>CWH</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

In-block retention consists both of patch retention and dispersed retention. Some of this retention is located in areas that are either inoperable or in areas already constrained for other reasons. TSR 2015 used an analysis of Forest and Range Evaluation Program (FREP) monitoring data and concluded that within harvested cutblocks an average of 14.7% of the forested land was retained with 8.1% that was not otherwise constrained. Licensees have indicated that this 8.1% retention is based on a large cut block strategy to salvage MPB-impacted stands and this likely overestimates future retention practices.

8.3 Riparian Management

Riparian areas are a significant contributor to stand- and landscape-level biodiversity. Forest harvesting, road construction, and other disturbances such as fires or insects have the potential to degrade riparian areas. The overall trend for resource development on stream function was neutral in the Merritt TSA between 2005 and 2012. Increased stream bank disturbance was observed from windthrow, cattle damage, and some beaver damage. Opportunities for improvement include:

1. enhance management of windthrow, livestock, roads and crossings to minimize sediment input and protect channel banks; and
2. maintain high levels of retention within the first 10 metres of streams, particularly on the small streams connected to fish streams or drinking water, and decrease exposed erodible ground near streams.

Source: FLNRO 2013, FREP MVRA report

A comprehensive stream classification has not been completed in the Merritt TSA. In 2001, the NSIFS developed a stream classification model based on TRIM1 and Forest Practice Code riparian classifications that was shown to correctly classify streams with 68% spatial accuracy, and 97% netdown accuracy based on riparian zones for each class. This model was not accepted by the Ministry of Sustainable Resource Management for operational use, but they indicated it might be acceptable at the strategic level for timber supply review. They also indicated that the model validation process was perceived as biased given that a separate data set was not used for validation.
Most lakes in the TSA have been classified through a local planning process - the Merritt TSA Lakes Classification Process - that resulted in lakeshore management zones for classified lakes.

Through their FSPs, licensees have committed to riparian zone widths that are consistent with those in the Forest Planning and Practices Regulation.

A spatial dataset containing stream, lake and wetland class data provided by the FLNRO Cascades district was used for TSR 2015.

8.4 Landscape Connectivity

In some areas, stand structures that serve to connect habitats across a landscape have been adversely affected by salvaging infested pine from mixed stands, extensive clearcuts in pine-dominated watersheds, limited retention and large scale fires. The loss of this aspect of biodiversity can cause disproportionate impacts to species at risk confined to isolated pockets of suitable habitat. Connectivity is provided in the Merritt TSA through various mechanisms including strategies that prescribe retention for specific resource management zones, old growth management areas, and provisions for riparian management.

Monitoring the impact to stand structure in these areas may be needed to ensure they provide required stand structure over time. Prescribing foresters can help enhance connectivity by increasing retention levels in large cutblocks and focusing some retention strategies in riparian areas, gullies, and other connectivity corridors for wildlife habitat features.

8.5 Management for Coarse Woody Debris

At a stand level, coarse woody debris is managed through provisions in FSPs, the Chief Forester’s guidance, licensee discretion, and stewardship principles. While the beetle infestation has enhanced the supply of coarse woody debris in the short- and medium-terms, activities such as salvage, road building, and safety-hazard abatement for roads, replanting and stand tending, can significantly reduce the supply of coarse woody debris over time. Coarse woody debris is also vulnerable to intensive fires promoted by large supplies of MPB-killed pine. Strategies to retain coarse woody debris through time are an essential component for developing silviculture strategies.
9 Climate Change Adaptation

The rate of change in climate over the last 100 years is equivalent to the rate of change of the preceding 1000 years. Rapid change in climate is an overarching pressure on the forests affecting both timber and environmental values. Table 19 provides an estimate of the predicted change by 2050.

Table 19 Summary of Climate Change for Thompson/Okanagan Region in the 2050s (Pacific Climate Impacts Consortium – Plan2Adapt)

<table>
<thead>
<tr>
<th>Climate Variable</th>
<th>Season</th>
<th>Projected Change from 1961-1990 Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ensemble Median</td>
</tr>
<tr>
<td>Mean Temperature</td>
<td>Annual</td>
<td>+1.8 °C</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Annual</td>
<td>+6%</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>-9%</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>+7%</td>
</tr>
<tr>
<td>Snowfall* (%)</td>
<td>Winter</td>
<td>-11%</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>-55%</td>
</tr>
<tr>
<td>Growing Degree Days* (degree days)</td>
<td>Annual</td>
<td>+319 degree days</td>
</tr>
<tr>
<td>Heating Degree Days* (degree days)</td>
<td>Annual</td>
<td>-654 degree days</td>
</tr>
<tr>
<td>Frost-Free Days* (days)</td>
<td>Annual</td>
<td>+24 days</td>
</tr>
</tbody>
</table>

Projected changes in average (mean) temperature, precipitation and several derived climate variables from the baseline historical period (1961-1990) to the 2050s for the Thompson/Okanagan region. The ensemble median is a mid-point value, chosen from a PCIC standard set of Global Climate Model (GCM) projections. The range values represent the lowest and highest results within the set.

As outlined on the FLNRO Competitiveness and Innovation Branch website page Adapting BC’s Natural Resource Management to Climate Change, BC’s overarching Climate Change Adaptation Strategy envisions that “British Columbia is prepared for and resilient to the impacts of climate change.” Adapting forest to climate change is an important part of the adaptation work being undertaken in BC.

The FLNRO Competitiveness and Innovation Branch released a Climate Change Strategy (2013-2018) in September, 2013. The three goals included in the strategy are:

1. climate change is integrated in ministry core business;
2. climate-relevant science, data and knowledge guide and inform the identification of the ministry’s environmental, social, and economic risks, opportunities, and priorities for climate change action; and
3. climate change action is undertaken through collaboration, partnerships, communication and outreach with BC’s First Nations, communities and natural resource sector.

A number of tools have been developed to assist foresters with understanding changes underway in their area and to adapt forest management so that BC forests remain resilient to climate change,
variability and other stressors. Examples include regional climate summaries, western larch seed planning zone updates, and stand establishment aids. The full list of tools and website links can be found at: https://www.for.gov.bc.ca/het/climate/knowledge/tools.htm.

This ISS project aims to consider the effects of climate change and develop clear objectives and strategies for appropriate tree species to be planted at the landscape and forest level.
10 Other Development

10.1 Mines
The Copper Mountain mine, located 20 kilometres south of Princeton, is the third largest copper mine in Canada, covering roughly 7,300 hectares. It began production in 2011 and has an expected mine life of 17 years.

10.2 Pipelines
A Kinder Morgan pipeline capable of transporting both crude oil and refined products passes through the Merritt TSA from Kamloops to the lower mainland. As well, Spectra Energy owns a natural gas pipeline that follows a similar route, while FortisBC operates several natural gas pipelines within the TSA.

10.3 Hydro-Electric Power
While there are no hydro-electric power stations, several major transmission lines traverse the Merritt TSA.

10.4 Wind Power
While one 391 hectare area is being developed for wind power, there are 26 other licence and permit areas, totalling 90,084 hectares, in the investigative and monitoring phase. Another 8 areas, totalling 25,885 hectares, are currently under application for the investigative and monitoring phase.

10.5 Communication Sites
There are numerous communication sites within the Merritt TSA.
11 Other Key Values and Issues

11.1 Parks, Protected Areas and Ecological Reserves

Harvesting is not permitted from the nine parks and two ecological reserves located within the Merritt TSA:

- Kentucky-Alleyne Park
- Allison Lake Park
- Bromley Rock Park
- Coldwater River Park
- E.C. Manning Park
- Monck Park
- Otter Lake Park
- Pennask Creek Park
- Stemwinder Park
- Soap Lake Ecological Reserve
- Whipsaw Creek Ecological Reserve

In TSR 2015, the Coquihalla Summit Recreation Area was also considered to be protected, while the Brent Mountain Protected Area and Otter Lake Protected Area would be available for harvest.

Source: TSR 2015 Technical Report

Two areas of interest have also been identified as potential future parks:

- Kentucky-Alleyne ASA (1,052 hectares of THLB)
- Paradise Lake ASA (84 hectares of THLB)

Source: Merritt TSR Data Package - 2014 Factor 04 – Protected Areas

11.2 Watershed Health

Large scale MPB infestations affect watershed hydrological processes such as canopy interception, transpiration, soil moisture storage, groundwater levels and recharge, snowfall, snow melt, rain-on-snow effects, runoff and peak flow timing and duration, flood events, stream and stream bank stability, erosion, and sedimentation. Changes in these hydrologic factors can increase the risk on a number of watershed values including aquatic ecosystems, species, and supply of domestic water use. In some cases the potential for hydrologic changes may be, to some degree, estimated by equivalent clear cut areas within specific drainages.

The accelerated rate of harvesting and associated road development poses an increased risk to water quality, as does the increased amount of road that is active throughout the salvage period. Significant increases in road density and numbers of stream crossings can increase peak flows, sedimentation, and changes in channel morphology. This can be reduced by accelerating hydrological green-up with an emphasis on maintaining vegetation within riparian ecosystems. This is especially important along fish-bearing streams and wetlands, as well as, within fishery-sensitive watersheds and community watersheds. Landscape level effects of MPB salvage harvest within watersheds that contain bull trout is a management concern.

The MRVA completed in 2013 (Section 2.6) assessed: a) water quality as affected by road construction and ongoing maintenance, and b) riparian management as affected by forest harvesting activities, including blowdown. Together these assessments provide an indication of how well watersheds are...
far more today compared to past practices and also provide an excellent baseline for comparing ongoing
and future operations and the impacts of the accelerated salvage harvesting.

Approximately 270 assessment watersheds are located within the Merritt TSA.

11.2.1 Community Watersheds

There are nine designated community watersheds located within the TSA, totalling 11,351 hectares
(Table 20). Interior Watershed Assessment Procedures and Overview Hydrologic Assessments have been
completed for most of these watersheds. Only one watershed has an assessment that contains
recommended maximum equivalent clearcut area (ECA) levels. Licensees’ FSPs generally require an
assessment to be completed when ECAs reach 25 to 30 percent.

Table 20 Community Watersheds in the Merritt TSA

<table>
<thead>
<tr>
<th>Community Watershed Name</th>
<th>Total Area (hectares)</th>
<th>THLB Area (hectares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>275</td>
<td>206</td>
</tr>
<tr>
<td>Bell</td>
<td>344</td>
<td>171</td>
</tr>
<tr>
<td>Brook</td>
<td>3,009</td>
<td>2,392</td>
</tr>
<tr>
<td>Dillard</td>
<td>3,872</td>
<td>3,182</td>
</tr>
<tr>
<td>Hackett</td>
<td>164</td>
<td>140</td>
</tr>
<tr>
<td>Kwinshatin</td>
<td>2,726</td>
<td>1,907</td>
</tr>
<tr>
<td>Lee</td>
<td>465</td>
<td>314</td>
</tr>
<tr>
<td>Skuagam</td>
<td>452</td>
<td>376</td>
</tr>
<tr>
<td>Thomas</td>
<td>44</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Merritt TSR Data Package – 2014 Factor 30 Community Watersheds

11.2.2 Fisheries Sensitive Watersheds

Eight Fisheries Sensitive Watersheds (FSW) or basins have been proposed within the Merritt TSA (Table
21). Default draft objectives that might accompany each FSW through an Order include:

The objectives for these FSWs are to:

a. retain and protect mature timber and/or other natural vegetation on all active fluvial units
with fish-bearing channels, and those that are direct tributary to fish bearing waters, to
maintain stability and riparian function;

b. minimize adverse sediment related effects on fish and fish habitat by maintaining a low
likelihood of sediment delivery from un-natural sources to fish streams or direct tributaries
to fish streams; and

c. maintain an equivalent clearcut area of less than 20% in fisheries sensitive watersheds as set
out in the areas identified in Table 21.

Despite objective c, an equivalent clearcut area of more than 20% may be maintained after:

i. an assessment of watershed sensitivity to forest development disturbance is completed by a
qualified professional;

ii. Maintaining an amount type and distribution of forest cover that is sufficient to sustain
natural hydrological and fluvial processes, based on the assessment in subsection (i); and,

iii. To the extent practicable, an adaptive management plan is developed and implemented.
Table 21 Proposed Fisheries Sensitive Watershed in the Merritt TSA

<table>
<thead>
<tr>
<th>Watershed/Basin</th>
<th>Total Area (hectares)</th>
<th>THLB Area (hectares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spius</td>
<td>76,7557</td>
<td>24,506</td>
</tr>
<tr>
<td>Prospect (basin)</td>
<td>22,151</td>
<td>8,392</td>
</tr>
<tr>
<td>Maka (basin)</td>
<td>21,607</td>
<td>7,832</td>
</tr>
<tr>
<td>Upper Spius (basin)</td>
<td>9,235</td>
<td>2,754</td>
</tr>
<tr>
<td>Coldwater</td>
<td>91,257</td>
<td>32,519</td>
</tr>
<tr>
<td>Juliet (basin)</td>
<td>6,911</td>
<td>2,169</td>
</tr>
<tr>
<td>Upper Coldwater (basin)</td>
<td>36,250</td>
<td>14,561</td>
</tr>
<tr>
<td>Nualitch</td>
<td>8,338</td>
<td>2,270</td>
</tr>
</tbody>
</table>

Merritt TSR Data Package – 2014 Factor 99 – Fisheries Sensitive Watersheds

11.2.3 Temperature Sensitive Streams

Under the *Wildlife Act*, the Minister of Environment may designate a portion of a fish stream as temperature sensitive if trees are required adjacent to the stream to manage the temperature of the designated portion for the protection of fish, and management of the temperature of the designated portion is not otherwise provided.

No temperature sensitive streams are currently designated within the Merritt TSA but they are being considered for fish bearing streams (S1-S4) and direct tributaries (S5-S6) within the Nicola watershed boundary. Such designations would require additional tree retention within the riparian management zones for S4 streams and S5/S6 direct tributaries greater than 100 metres in length. Figure 16 illustrates how this would be applied.

![Figure 16 Application of GAR s.15 and the FPPR s.53 to three different stream networks in three similar sized watersheds (From Reese-Hanson et al 2012)](image)

Merritt TSR Data Package – 2014 Factor 98 – Temperature Sensitive Streams

11.3 Archaeological Resources, First Nations Cultural Use and Sensitive Sites

Various archaeological inventory studies (including archaeological impact assessments) have been undertaken in the Merritt TSA. For TSR 2015, the archaeological sites resulted in a reduction to the total
landbase and THLB of 2,159 hectares and 558 hectares, respectively. Additional sites (archaeological and/or cultural heritage resource values) identified by First Nations and forest licensees during the planning process are usually protected by establishing wildlife tree patches or by changing harvest block boundaries.

Source: Ministry of Tourism, Culture and the Arts’, Remote Access to Archaeological Data (RAAD) website

First Nations have also identified two sites that are spiritually important:

1. Stoyoma Area - the current practice is to actively and deeply engage First Nations in planning and harvesting monitoring. Licensees are also encouraged to communicate any plans to harvest on Stoyoma Mountain with the District Manager so that the district may proactively work with the licensees and First Nations on the planning phases.

2. The Missezula Lake area - also known as a Xe Xe area - is approximately 619 hectares in size. This area is viewed as a long-term reduction to timber supply.

There are a number of other spiritual or cultural sensitive sites that also exist within the Merritt TSA. Maps of these areas have not yet been made available but these areas could be significant. As with the Stoyoma area the current practice is to actively and deeply engage First Nations in harvest planning.

11.4 Visual Quality Objectives

An inventory of visually sensitive areas has been in place for the Merritt TSA since the early 1990s; covering major highways, communities, lakes, and some trails. Visual quality is managed through the application of design guidelines cooperatively between District staff and forest licensees.

A lakeshore classification project completed in 1998 supported the establishment of Visual Quality Objectives for all Class A, B, and C lakes on July 2, 1999. The visual landscape inventory was updated for major travel corridors in 2002 and Visual Quality Objectives were subsequently established on September 30, 2003.

Table 22 provides a summary of the total and THLB areas by visual quality objective. Approximately 17% of the total area and 14% of the THLB area falls within the more restrictive visual quality objectives (i.e., Preservation, Retention, and Partial Retention). Figure 17 shows the locations of the VQO polygons within the TSA.

Table 22: Visual Quality Objective Summary for the Merritt TSA

<table>
<thead>
<tr>
<th>Visual Quality Objective</th>
<th>Total Area (ha)</th>
<th>THLB Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation</td>
<td>1,954</td>
<td>654</td>
</tr>
<tr>
<td>Retention</td>
<td>49,538</td>
<td>13,217</td>
</tr>
<tr>
<td>Partial Retention</td>
<td>142,109</td>
<td>68,144</td>
</tr>
<tr>
<td>Modification</td>
<td>45,725</td>
<td>20,744</td>
</tr>
</tbody>
</table>
Figure 17 VQO polygons established in the Merritt TSA
11.5 Recreation

Recreation objectives were established for 145 recreations sites, trails, and interpretive sites in January, 2000. These objectives are considered higher level plans and only apply to the areas for which they were established. These were not considered to have any timber supply impacts for purposes of TSR 2015.

Portions of four trails declared under the Heritage Conservation Act are located within the Merritt TSA:

- The Hope Pass trail section (2.75 km)
- The Dewdney trail section (3.7 km)
- The Whatcom trail section (4.02 km)
- The Hudson’s Bay Company trail (23.23 km)

These trails have a 200 metre right-of-way that requires a permit for any alterations. Since the area adjacent to these trails must meet a Retention visual quality objective, much of the trail is considered to be non-THLB. Locations of the recreation sites and trails are best viewed on the project website: http://services.forsite.ca/merrit_tsa

Source: Merritt TSR Data Package – 2014 Factor 34 – Recreation

11.6 Guide Outfitters and Trappers

In BC, all non-residents are required to be accompanied by a licenced guide while hunting big game (i.e., deer, mountain sheep, mountain goat, moose, caribou, elk, cougar, wolf, grizzly bear, black bear, lynx, bobcat, and wolverine). There are five guide-outfitter certificates designated within the Merritt TSA (Figure 18). Two of these are located mainly in adjacent TSAs with small areas overlapping the Merritt TSA (approximately 1,890 and 4,130 hectares respectively).

In 1926, to protect species from over harvesting, the Province was divided into registered trapline areas sold to a trapper so that he/she is the only person with the right to trap furbearing animals inside this area. There are 39 trapline licenses distributed throughout the Merritt TSA (Figure 18).

Both trappers and guide outfitters rely on the maintenance of wilderness, wildlife and fisheries values. Concerns have been expressed that salvage operations may adversely impact wildlife populations, and in the case of guide outfitters, their clients’ experience.
Situation Analysis - Version 1.3
11.7 Ranching

Ranching is a significant industry in the Merritt TSA; with over 70 active range tenures covering approximately 81% of the total TSA area (Figure 19). Activities of both range tenure holders and forest licensees can affect each other to a great degree; requiring both stakeholders to communicate and work together to resolve conflicts, such as the few examples described below.

Harvesting and silviculture activities can create forage opportunities within a grazing tenure but these activities can make it difficult for cattle to access cutblocks if there is excessive coarse woody debris left on-site, or de-stumping to address root disease. The opportunity to create forage through grass seeding can also be reduced if the harvesting and site preparation does not result in exposed mineral soil.

Harvesting can also make it easier for cattle to access riparian areas, which can then impact water quality. Harvesting can also breach natural range barriers that must then be mitigated by fencing.

Regeneration of cutblocks can be impacted by trampling, browsing, and competition from grass. This makes it more difficult and costly for forest licensees to meet their legal reforestation obligations, while reduced stocking can affect future timber supply.
Legend

- Range Tenure

Figure 19 Range Tenures in the Merritt TSA
11.8 Road Density and Access

Roads, transmission lines, pipelines, and seismic lines can impact biodiversity by fragmenting habitat, impeding the movement of native species, facilitating the invasion of alien species, disrupting surface and subsurface waterflow, altering predator-prey relationships, and causing direct mortality through collisions with vehicles (Gayton, 2007). For example, roads are known to have a negative effect on Grizzly bears at densities over 0.4 kilometres of road per square kilometre.

The Merritt TSA is considered to be relatively well-roaded; with over 20,000 kilometres of road included in TSR 2015.

District staff have expressed interest in exploring potential rehabilitation of temporary roads to allow for establishment of commercial trees, as described in FREP extension Note #33. Further work will be required to determine the amount of temporary roads in the Merritt TSA in order to explore this opportunity.

11.9 Herbicide Use

Pesticides may be used by licensees to control brush species to meet free growing requirements. The most common pesticides used are glyphosate and triclopyr which are applied to reduce the competition of aspen, birch and cottonwood. Licensees utilize pesticides in accordance with a registered and publically reviewed Integrated Pest Management Plan (IPMP) which is required by the Integrated Pest Management Act.

Despite their proper and appropriate use, there is additional risk to biodiversity values such as non-target species that could be affected by overspray and loss of habitat/food species. Riparian areas and grassland/forest borders are of particular concern.
12 References

Integrated Silviculture Strategy for the Merritt TSA

May 20, 2016

Timberline Forest Inventory Consultants Ltd. 2007. Merritt TSA Enhanced Silviculture Strategy Analysis.