DEER AND ELK HABITATS IN COASTAL FORESTS OF SOUTHERN BRITISH COLUMBIA

NOVEMBER 1990
Deer and Elk Habitats in Coastal Forests of Southern British Columbia

J. B. Nyberg and D. W. Janz
Technical Editors

1 British Columbia Forest Service
Research Branch
31 Bastion Square
Victoria, B.C.
V8W 3E7

2 Ministry of Environment
Vancouver Island Region
2569 Kenworth Road
Nanaimo, B.C.
V9T 4P7

October 1990

B.C. Ministry of Forests
B.C. Ministry of Environment

Published in co-operation with Wildlife Habitat Canada
and the Council of Forest Industries of British Columbia
Canadian Cataloguing in Publication Data

Nyberg, J. B.
Deer and elk habitats in coastal forests of southern British Columbia

(Special report series, ISSN 0843-6452 ; no. 5)

Co-published by B.C. Ministry of Environment in cooperation with Wildlife Habitat Canada.
Includes bibliographical references.
ISBN 0-7718-8949-6

QL737.U55N92 1990 599.73'57 C90-092136-6

© 1990 Province of British Columbia
Published by the Research Branch
Ministry of Forests
31 Bastion Square
Victoria, B.C. V8W 3E7

Copies of this and other Ministry of Forests titles are available from Crown Publications Inc., 546 Yates Street, Victoria, B.C. V8W 1K8.
Preface

Since integrated management of British Columbia's resources became a provincial goal in the mid-1970's, land managers have struggled to achieve the optimum production of wood and wildlife from Crown forests. Little information has been available to explain how the management of forest stands and wildlife can be combined, and joint objectives for both resources have seldom been stated. Confusion and confrontation have often resulted. Although there is much knowledge that could aid integration of the management of timber with deer and elk, that knowledge has not been summarized in a format managers can easily use. This handbook is intended to provide, in one document, most of the information managers need to understand the interactions of forests, elk, and deer on British Columbia's south coast.

Improved management is needed because both wildlife and timber have high production potentials and demand from users is strong, but conflicts over land use are common. Coastal British Columbia provides the province's most productive deer habitat, and the only habitat for Roosevelt elk in Canada. It also has the country's most valuable stands of timber and its most productive growing sites. Logging and silvicultural activities affect a huge area each year. In the Vancouver Forest Region, for example, over 1000 km² were treated during the 1987-88 fiscal year alone (B.C. Ministry of Forests and Lands 1988). The harvesting and renewal of forests influence deer and elk populations greatly because the animals rely on forest vegetation for most of their requirements of life, including food and shelter. Some timber management practices, depending on where, when, and how they are applied, can damage habitat and reduce elk and deer populations. Other practices can improve habitat. Wildlife and forest managers, therefore, face important challenges in planning timber management programs that recognize deer and elk needs. Attempts at integrated management have often failed to resolve problems or exploit opportunities, however, because advocates of wildlife and timber could not agree on objectives or a management strategy.

Both government and the public want more from their forests and their resource managers. Provincial legislation governing the purposes and management of Crown forest land makes it clear that the provincial government expects good integrated management of forests and wildlife. Public concerns over the current state of resource management are heard loudly and clearly during opinion polls, such as those conducted for the Canadian Forestry Service (Decima Research 1986) and MacMillan Bloedel Limited (Goldfarb Consultants 1987). Yet, since the early 1970's, few modifications have been made to methods used to plan the management of wildlife habitat and timber. Change is long overdue.

We believe the most appropriate first steps toward that change are to improve communication between timber and wildlife managers, and to increase their understanding of timber and wildlife interactions. For too long, responsibility for the various aspects of timber and wildlife management has been left to specialists — logging managers, silviculturists, and biologists — occupying enclaves of separate objectives and knowledge. Now, managers of wildlife and timber must work together to develop co-operative solutions; or at least to understand the reasons why no such solution is possible in some situations. They need a common language, a shared understanding of the forestry options available to them, and a commitment to work together to improve techniques.

This handbook offers a seed from which co-operative solutions can grow. This seed needs to be watered by training and demonstration, warmed by frequent use, and fed by constant testing and improvement. Some critics may say this is still not enough, that we cannot have better forest wildlife management without new laws, further research, more regulations, more staff, and more money. No doubt all of these would help. In the meantime, however, we think existing knowledge could be put to better use.

Timber management and silvicultural programs are expanding in scale and sophistication every year, with increasing impacts on deer and elk habitats. Improvements in integrated management cannot come too soon. Jack Ward Thomas (1979, p. 19), in describing the need for a wildlife habitat
handbook for the Blue Mountains of Oregon and Washington, said it best:

Some will say it is too soon to undertake such task, but there are really only two choices — too soon or too late. With intensified forest management, impacts on wildlife will magnified. The need is critical. The time is now.

Land managers feel few qualms about acting imperfect information, because they usually no other choice. As Carl Walters (1986, p. put it:

resource managers must learn to live with some very substantial uncertainties.... This means in the end that many key management decisions are essentially gambles.... Most people find it rather uncomfortable at first to think of resource decision making as gambling.... Indeed, when uncertainties are revealed in public debates it is often argued that inaction (wait and see, do more research) preferable to the indignity of gambling; such arguments can reflect gross confusion between personal ethics (gambling as a personal weakness or bad habit) and public responsibility.

with information from the chapters that managers of elk, deer, and timber will at know the odds when they fulfill their public responsibilities by “playing their cards.”

matter how effective it is, though, this handbook cannot solve all of our timber-wildlife problems. Lack of clear policies and objectives for integrated production of timber and wildlife continues to hinder improved management. So the problem of how to compare the societal uses as wildlife and timber are. In addition, book applies to only a small part of the province, and to only two wildlife species. It is a starting point, not the end of the issue.

This book contains the best that this group of can offer to provide guidance and stimulate new ideas. It is not full of answers, guidelines, or prescriptions (since there are no answers to most wildlife-timber questions). it presents facts, relationships, and procedures that are designed to be clear and useful in day-to-day management of coastal forest habitats. Although it can serve as an educational text for staff new to the coast or to the business of integrated management, the book’s greatest value will be in helping experienced and imaginative managers to develop new solutions to old problems.

But it is only a tool. If left unused, the book will achieve nothing. There is, thankfully, no shortage of qualified people with the concern, the will, and the energy to make integrated management of elk, deer, and timber a reality. We hope this book will find a welcome place in their hands.

Brian Nyberg
Doug Janz
Technical Editors
Acknowledgements

addition to the authors, many people and organizations have made important contributions to the handbook. Most of the funding was provided by the Ministry of Forests and the Ministry of Environment through their contributions to the Integrated Wildlife-Intensive Forestry Research (IWIFR) program. Additional support was provided by Wildlife Habitat Canada, support we gratefully acknowledge. Among individuals who made special contributions, thank the members of the Handbook Advisory Committee, who provided guidance and constructive criticism on draft copies: Glen Carlson, Mike Fenger, Mike Holmes, Dick Kosick, McDougall, Tom Molfenter, Bruce Oakley, Reichenback, Mel Scott, Cees van Oosten, old, and Paul Wooding; members of the Technical Working Group, who provided advice from the beginning of the Bill Bourgeois, Don Eastman, Rick Ellis, Korelus and others acknowledged above or as co-authors; and members of the IWIFR Steering Committee, who maintained their commitment to the handbook completed through several changes and unexpected delays: Peter Ackhurst, Ted Baker, Tom Burgess, Keith Illingworth, Gerry Kennah, Gordon Prouse, Doug Rickson, Jim Walker, Mike Whately, and Tom Design and production assistance came Beth Collins, Susan Fergusson, Robin Hoffos, Izard, Paul Nystedt, Lyle Ottenbriet, Rick Thomas, and Jacqueline Verkely. The text was by Georgina Montgomery and processed by Gronmyr, Lianne Hein, Jean Stringer, and ood. Photographs by other than provincial government employees were submitted by Alton Harestad, Line Giguère, and Ron McLaughlin. contributions came from Myke Chutter, Davies, Ron Diederichs, Andrew Harcombe, Kremsater, Ron McLaughlin, Doug Morrison, Les Peterson, Cheryl Ray, Karen Sadoway, and John Youds.

Special credit is due to Ted Richardson of Aprotek Design for his contribution of the conceptual design for the handbook’s format and assistance in compilation, layout, and production. Ted’s vision of the product and his insights into users’ needs are largely responsible for the approach we adopted.
DEER AND ELK HABITATS

Authors

R.B. Addison
Manager, Range
British Columbia Forest Service
Integrated Resources Branch
1450 Government Street
Victoria, B.C.
V8W 3E7

D.Q. Becker
Consulting Biologist
1718 Meadowbrook Drive
Campbell River, B.C.
V9W 6L9

K.R. Brunt
Wildlife Biologist
Ministry of Environment
2569 Kenworth Road
Nanaimo, B.C.
V9T 4P7

F.L. Bunnell
Professor
Faculty of Forestry
University of British Columbia
193-2357 Main Mall
Vancouver, B.C.
V6T 1W5

R.D. Forbes
Wildlife Biologist
Ministry of Environment
10334-152A Street
Surrey, B.C.
V3R 7P8

D.W. Janz
Head, Wildlife Section
Ministry of Environment
2569 Kenworth Road
Nanaimo, B.C.
V9T 4P7

R.S. McNay
Wildlife Habitat Ecologist
British Columbia Forest Service
Research Branch
31 Bastion Square
Victoria, B.C.
V8W 3E7

J.B. Nyberg
Manager, Wildlife Habitat Program
British Columbia Forest Service
Research Branch
31 Bastion Square
Victoria, B.C.
V8W 3E7

E.L. Richardson
Aprotek Design
2570 East 40th Avenue
Vancouver, B.C.
V5R 2V9
TABLE OF CONTENTS

Preface ... iii

Acknowledgements .. v

CHAPTER 1. Introduction .. 1

CHAPTER 2. Ecology of Black-tailed Deer .. 31

CHAPTER 3. Ecology of Roosevelt Elk ... 65

CHAPTER 4. Interactions of Timber Management with Deer and Elk 99

CHAPTER 5. Techniques for Managing Habitat ... 133

CHAPTER 6. Applying the Handbook to Habitat Management Planning 197

APPENDIX 1. Understory Types .. 239

APPENDIX 2. Special Habitats .. 279

APPENDIX 3. Glossary ... 285

APPENDIX 4. Latin and Common Names .. 289

APPENDIX 5. Forest Cover Map Legend .. 293

LITERATURE CITED .. 295

INDEX ... 303
TABLES

1. Characteristics of snowpack zones on the south coast ... 16
2. Understory types of Vancouver Island and the coastal mainland of southern British Columbia ... 24
3. Special habitats of Vancouver Island and the coastal mainland of southern British Columbia ... 26
4. Important forage plants for Columbian black-tailed deer in southern British Columbia ... 40
5. Relative values of each understory type for potential production of deer forage ... 41
6. Important forage plants for Roosevelt elk on Vancouver Island 77
7. Relative values of each understory type for potential production of elk forage ... 78
8. Characteristics of herbicides commonly used on forest lands in coastal British Columbia ... 115
9. Area on the south coast designated as Environmentally Sensitive Areas (ESA’s) for wildlife during inventory update for Timber Supply Area yield analysis ... 129
10. Understory types in the shallow snowpack zone with good forage potential for deer ... 139
11. Understory types in the shallow snowpack zone with good forage potential for elk ... 139
12. Location criteria for deer winter range treatment areas ... 146
13. Optimum distance between winter and spring ranges for deer ... 147
14. Understory types in the moderate snowpack zone with good winter forage potential for deer ... 147
15. Understory types in the moderate snowpack zone with good winter forage potential for elk ... 155
16. Optimum distance between winter and spring ranges for deer ... 161
17. Understory types in the moderate snowpack zone with good spring forage potential for deer and elk ... 161
18. Understory types in the moderate snowpack zone with good summer forage potential for deer ... 167
19. Understory types in the moderate snowpack zone with good summer forage potential for elk ... 167
20. Understory types in the very deep snowpack zone with good summer forage potential for deer ... 183
21. Understory types in the very deep snowpack zone with good summer forage potential for elk ... 183
22. Techniques for managing forage ... 190
23. Techniques for managing security and thermal cover ... 192
24. Techniques for managing snow interception cover ... 194
Table of Contents

FIGURES

1. The varied topography and mild climate make the south coast highly productive for both forests and wildlife ... 2

2. In Canada, Roosevelt elk occur only on Vancouver Island and at a few localities on British Columbia's southern mainland .. 3

3. Columbian black-tailed deer are common throughout the area covered by the handbook .. 3

4. Many old-growth stands on Vancouver Island and the mainland are deferred from logging to provide critical winter ranges for deer ... 4

5. The 1975-80 trend in the deer population of an unlogged, unhunted watershed on northern Vancouver Island indicates the effects of wolf predation ... 5

6. The opportunity to see deer and elk attracts many people to the forest .. 6

7. Manufacturing shipments by sector in British Columbia, 1985 .. 7

8. Deer management priorities on the south coast as set by the Ministry of Environment .. 9

9. Elk have been transplanted to several areas on Vancouver Island and to the Sechelt Peninsula in recent years ... 10

10. Planning levels in the Forest Service hierarchy ... 11

11. Most coastal areas were covered in old-growth forests before widespread logging began .. 13

12. Most areas have now been at least partially logged ... 13

13. Generalized distribution of snowpack zones ... 17

14. Snowpack zones in the handbook area ... 18

15. Delayed phenology at high elevations makes high-quality forage available throughout most of the summer ... 21

16. The quantity and quality of forage available to deer and elk fall greatly from summer to winter ... 22

17. Relationships of the understory types to the biogeoclimatic units and edatopes .. 25

18. Successional stages as defined in this handbook ... 27

19. Relationship between successional stage classifications used in this handbook and those of other authors ... 28

20. Distribution of black-tailed deer in British Columbia ... 33

21. Columbian black-tailed deer differ from mule deer in having shorter ears, smaller antlers and bodies, and largely black tails with small white rump patches ... 34

22. Annual cycle of weight, reproductive activity, and antler growth in adult Columbian black-tailed deer ... 36

23. Quality of the range can greatly affect rates of reproduction and population growth .. 36

24. Population trend data from the Nimpkish River valley show the variability in population growth rates common to black-tailed deer ... 37

25. The proportion of highly digestible material in forage plants varies with the seasons and among plant species ... 38
DEER AND ELK HABITATS

26. The low-quality diets available during severe winters yield little protein and energy even if deer are able to fill their rumens with food 39
27. Trends in digestibility (available energy) of forage species through the year in the Nimpkish River valley .. 41
28. Trends in protein content of forage species through the year in the Nimpkish River valley ... 42
29. Little forage is available in open areas during snow winters .. 43
30. Good winter range provides a high level of available energy that counterbalances the effects of deep snow and cold weather 44
31. Deer prefer to remain near security cover when foraging in open areas 45
32. The metabolic rate of black-tailed deer is lower and the limits of thermoneutral zone occur at lower temperatures in winter than in summer 46
33. The energetic costs of walking in snow are affected by snow density, snow depth, and leg length of deer ... 47
34. Red huckleberry (a) and salal (b) plants are tallest under moderately closed canopies, which also intercept significant amounts of snow 48
35. Distributions of radio-telemetry locations of deer in clearcuts relative to distance from cover in the Nanaimo River area, as compared to random locations throughout the study area 49
36. Distributions of radio-telemetry locations of deer in cover adjacent to clearcuts in the Nanaimo River area ... 50
37. Home ranges of most deer are small when habitats are well interspersed because deer need to move only short distances to find all their habitat requirements 51
38. Seasonal movement distances are influenced by the distribution of seasonal ranges 52
39. Migratory deer that range widely may be affected by forestry treatments that occur only on a small portion of their home ranges 53
40. Good habitat interspersion encourages healthier, more productive deer populations 54
41. Small clearcuts interspersed with forested patches provide good winter habitat in the shallow snowpack zone ... 56
42. Suitable stand characteristics are key components of critical winter ranges for deer 57
43. Areas above 1000 m are unsuitable as winter range for deer .. 58
44. The highlighted understory types have the highest potential for producing forage for deer ... 60
45. Current distribution of elk in British Columbia ... 67
46. Current and estimated historical distribution of Roosevelt elk in British Columbia 68
47. Typical antler development of spike (1-year-old), raghorn (2-year-old), and fully mature elk bulls ... 69
48. Elk often form large groups of cows, calves, and immature bulls .. 70
49. How habitat quality and winter severity influence the reproductive success of elk 71
50. Trends in limited entry hunt permits and elk harvests on Vancouver Island, 1977-1988 72
Table of Contents

51. Vegetated slides at the heads of river valleys are key components of summer range for many elk on Vancouver Island .. 74
52. Estimated dry matter digestibility (energy content) of seasonal elk diets on Vancouver Island during a series of mild winters .. 75
53. Seasonal variations of protein (nitrogen) levels of elk forage types on Vancouver Island elk ranges .. 75
54. Composition of seasonal diets for two migratory and two non-migratory elk herds on Vancouver Island .. 76
55. Effects of poor-quality seasonal ranges on the annual level of body fat reserves of elk ... 80
56. Dense stands of conifers at the sapling-pole stage provide excellent security cover ... 81
57. Generalized relationship between the energetic costs of thermoregulation for elk in summer and winter as a function of operative temperature .. 82
58. The relative increase in the cost of travel through snow as a function of snow depth (assuming elk sink through to ground level) in snow of two different densities .. 83
59. Generalized relationship between snow depth and forage quality, quantity, and availability ... 83
60. Generalized relationship of a stand’s ability to satisfy elk requirements through time ... 85
61. The quality of a seasonal range is determined not only by the presence or absence of elk requirements, but also by the manner in which they are distributed across the landscape .. 87
62. Distribution of elk radio-telemetry locations and visual observations in the Salmon River — Sayward Forest area relative to edges between openings and cover ... 88
63. Four hypothetical layouts of a 36-ha clearcut illustrating how block shape can influence the amount of edge created, and the distance to edge within the stand ... 88
64. Various levels at which habitat selection can be viewed ... 89
65. Seasonal and annual ranges of two migratory and three resident elk herds in the Campbell River area ... 90
66. Important components of elk winter range showing good interspersion of forage and cover requirements ... 92
67. The best forage for elk is produced on rich, moist sites, in the highlighted understory types ... 93
68. Small openings on southerly slopes often provide good spring range ... 95
69. Headwater areas of Vancouver Island rivers are the summer ranges for many elk herds ... 96
70. Many elk and deer concentrate in old-growth forests on valley bottoms and southerly slopes during severe winters ... 101
71. Topography influences the potential value of sites below 1000 m elevation as critical winter ranges for deer and as spring ranges for deer and elk ... 101
72. Harvesting of blocks near critical winter ranges may be spread over many years to sustain long-term production of spring forage ... 102
73. Both vegetation and topography can provide visual screens near important elk habitats such as wetlands ... 103

xi
DEER AND ELK HABITATS

74. The value of clearcuts (average use per unit area) as foraging areas for deer and elk declines as clearcut width increases beyond 120 m ... 103

75. Security cover patches approximately 100-300 and 100-500 m wide provide optimum value for deer and elk, respectively ... 104

76. Phases of forestry activities through the rotation ... 105

77. Abundant and diverse communities of herbs and shrubs provide excellent spring and summer forage (especially for deer) in many clearcuts .. 109

78. Predicted energy expenditures by deer and elk for locomotion through slash of various densities .. 110

79. Broadcast burning is the most commonly used site preparation method on the south coast .. 111

80. On rich sites, elk use deciduous stands heavily for foraging .. 114

81. Generalized trends in understory abundance as affected by thinning weight and timing .. 116

82. Abundance of selected species and species groups as affected by two levels of commercial thinning in a Douglas-fir stand ... 117

83. Downed trees in backlog non-commercially thinned stands can severely restrict elk and deer use of the stand ... 118

84. Salal abundance in a Douglas-fir stand as affected by thinning and fertilizing 119

85. An example of a three-lift pruning sequence .. 120

86. Relative preferences of deer and elk on Vancouver Island for coniferous forage 124

87. Even Sitka spruce may be heavily browsed when deer populations are dense 125

88. Openings adjacent to critical winter ranges often experience heavy browsing damage because many animals congregate in the area during winter and early spring 125

89. Plastic seedling protectors are widely used to shield planted seedlings from deer and elk browsing ... 126

90. Heavy thinning and pruning are two treatments that form part of regimes being tested for creating deer winter ranges in young stands .. 130

91. A schematic diagram of the snowpack zones and the pages pertaining to each zone in this chapter .. 134

92. A schematic diagram of the location of the shallow snowpack zone 135

93. Extensive dense young forests restrict forage production .. 136

94. Forage may be maintained by sequential harvests, by a single heavy thinning, or by repeated lighter thinnings ... 136

95. Open forage areas decrease in value to deer and elk as width increases above 120 m 138

96. Optimal width of cover areas ranges from 100 to 500 m .. 138

97. See the “Techniques for Managing Forage” table, p. 190, and the “Techniques for Managing Security and Thermal Cover” table, p. 192, to determine measures for successional stages .. 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98. A schematic diagram of the location of the moderate snowpack zone</td>
<td>142</td>
</tr>
<tr>
<td>99. Dense young forests provide inadequate forage and cover</td>
<td>143</td>
</tr>
<tr>
<td>100. Winter range created in young stands may replace old-growth ranges to be harvested in future</td>
<td>143</td>
</tr>
<tr>
<td>101. A winter range creation trial on southern Vancouver Island</td>
<td>145</td>
</tr>
<tr>
<td>102. See the “Techniques for Managing Snow Interception Cover” table, p. 194, to determine measures for successional stages</td>
<td>148</td>
</tr>
<tr>
<td>103. Extensive dense young forests provide inadequate forage and cover for elk</td>
<td>150</td>
</tr>
<tr>
<td>104. Young/Mature Timber with a closed canopy has very limited forage</td>
<td>151</td>
</tr>
<tr>
<td>105. Open forage areas decrease in value to deer and elk as width increases above 120 m</td>
<td>154</td>
</tr>
<tr>
<td>106. Use this figure to determine width of snow interception cover treatment areas</td>
<td>154</td>
</tr>
<tr>
<td>107. See the tables of techniques for managing forage and cover pp. 190-195, to determine measures for successional stages</td>
<td>156</td>
</tr>
<tr>
<td>108. Spring forage may be maintained by sequential harvests, by a single heavy thinning, or by repeated lighter thinnings</td>
<td>158</td>
</tr>
<tr>
<td>109. Open forage areas decrease in value to deer and elk as width increases above 120 m</td>
<td>160</td>
</tr>
<tr>
<td>110. Optimal width of cover areas ranges from 100 to 500 m</td>
<td>160</td>
</tr>
<tr>
<td>111. See the “Techniques for Managing Forage” table, p. 190, and the “Techniques for Managing Security and Thermal Cover” table, p. 192, to determine measures for successional stages</td>
<td>162</td>
</tr>
<tr>
<td>112. Extensive dense forests restrict forage production</td>
<td>164</td>
</tr>
<tr>
<td>113. Sequential logging to provide forage can enhance summer ranges</td>
<td>164</td>
</tr>
<tr>
<td>114. Open forage areas decrease in value to deer and elk as width increases above 120 m</td>
<td>166</td>
</tr>
<tr>
<td>115. Optimal width of cover areas ranges from 100 to 500 m</td>
<td>166</td>
</tr>
<tr>
<td>116. See the “Techniques for Managing Forage” table, p. 190, and the “Techniques for Managing Security and Thermal Cover” table, p. 192, to determine measures for successional stages</td>
<td>168</td>
</tr>
<tr>
<td>117. A schematic diagram of the location of the deep snowpack zone</td>
<td>172</td>
</tr>
<tr>
<td>118. Old-growth forests provide the best snow interception cover in the deep snowpack zone</td>
<td>173</td>
</tr>
<tr>
<td>119. Spring forage may be maintained by sequential harvests, by a single heavy thinning, or by repeated lighter thinnings</td>
<td>174</td>
</tr>
<tr>
<td>120. Extensive dense forests restrict forage production</td>
<td>175</td>
</tr>
<tr>
<td>121. Sequential logging to provide forage can enhance summer ranges</td>
<td>175</td>
</tr>
<tr>
<td>122. A schematic illustration of the location of the very deep snowpack zone</td>
<td>178</td>
</tr>
<tr>
<td>123. High-elevation areas seldom have shortages of forage or cover</td>
<td>179</td>
</tr>
<tr>
<td>124. Subalpine parkland provides abundant forage and scattered patches of security and thermal cover</td>
<td>180</td>
</tr>
</tbody>
</table>
DEER AND ELK HABITATS

125. Open forage areas decrease in value to deer and elk as width increases above 120 m 182
126. Optimal width of cover areas ranges from 100 to 500 m .. 182
127. See the “Techniques for Managing Forage” table, p. 190, and the “Techniques for Managing Security and Thermal Cover” table, p. 192, to determine measures for successional stages .. 184
128. The four-step sequence showing the results of each step .. 198