The importance of maintaining mountain caribou habitat in the Quesnel Highland portion of the Cariboo Forest Region was widely recognized by the early 1980's. At that time a 20-year timber harvesting deferral was established over much of this area. When the Cariboo Chilcotin Land Use Plan (CCLUP) Implementation Process Final Report (Province of British Columbia 1995) was released, the area included under the timber harvesting deferral for caribou habitat was designated as 35% modified harvest and 65% no harvest. The CCLUP allows operational timber harvesting within the modified harvest zone to begin as early as year 2000.

Mountain caribou winter habitat in the Cariboo Forest Region is found primarily at elevations above 1400 m in mature and old Engelmann spruce / subalpine fir (Picea englemanii / Abies lasiocarpa) forests that have abundant arboreal lichens. Arboreal lichen is the major food source for caribou during winter months. Most of the winter range habitat in the Cariboo Forest Region falls within the ESSFwc biogeoclimatic subzone with a smaller portion at high elevations of the ESSFwk. Caribou prefer slopes that are less than 45% but occasionally use steeper terrain. They require large tracks of land with adequate food resources in order that populations can be widely dispersed over the landscape and thereby limit predation. Clearcutting has been the most common silvicultural system used in these ecosystems. However, it removes the entire arboreal lichen source and more than 100 years will be required for a clearcut patch to provide adequate lichen forage for caribou. As a result, a harvested area managed under normal rotations may never provide suitable caribou habitat. Therefore a group selection silvicultural system has been recommended by the Cariboo-Chilcotin Land Use Plan Implementation Process.
Plan - Caribou Strategy as a means to continuously retain suitable lichen producing habitat throughout the winter range area.

Research was initiated as early as 1989 in the Cariboo Forest Region to study silvicultural systems that would maintain mountain caribou habitat. Based on initial studies, researchers recommended a group selection silvicultural system in which 33% of the timber is removed every 80 years. Recommended opening sizes can vary but should not exceed ~1.0 ha. Although initial indications are that this silvicultural system would likely provide suitable habitat for caribou, concerns were expressed with regard to other aspects of forest management. Can the regeneration on these sites meet all the silviculture obligations as outlined in the Forest Practices Code? Will windthrow be a problem? Is this method of harvesting operationally feasible? Although answers to these questions are still under investigation, results from seven years of research are providing some guidance.

Research began with a pilot trial in 1990. A group selection system with two opening sizes (0.03 and 0.008 ha) and an uncut control was established. Concerns regarding harvesting feasibility and seedling growth on the smallest opening size led to a change in the next stage of the research where a larger replicated trial (EP 1104.02) was logged in the winter of 1992/93. In this trial three opening sizes, (1.0, 0.13 and 0.03 ha) and an uncut control were tested on three sites (Figure 1). One site was located at Blackbear Creek with an elevation range of 1370 to 1550 m. The other two sites were located in the Grain Creek drainage at elevations of 1460 to 1680 m at the Upper Grain Creek site and 1525 to 1740 m at the Lower Grain Creek site (Figures 2 and 3).

A third stage of this research includes an adaptive management trial where approximately 1000 ha will be partially cut over a period of three to four years using a group selection system. An adjacent area that is over 2000 ha will be left as an untreated control. This stage will provide information on the use of large partially logged areas by caribou and will allow a better assessment of operational concerns. The first block is scheduled to be logged in March and April 2001. Due to concerns regarding seedling growth and financial feasibility the smallest opening size of EP 1104.02 (0.03 ha) was dropped. Opening sizes on the adaptive management trial range in size from 0.1 ha to ~1.0 ha with a large variety of sizes in between.

Figure 1. Replicated trial, Upper Grain Creek site.

METHODS

Research efforts have focused on the replicated trial (E.P. 1104.02) where numerous studies have been completed. The remainder of
this report will discuss regeneration, microclimate and windthrow results. This trial also includes studies concerning stand structure, lichen abundance and distribution, lichen growth, breeding bird communities, small mammal communities, and snow distribution and melt which will not be reported here.

Most studies were replicated over all three sites, but due to cost, microclimate was extensively studied only at the Blackbear Creek site. One climate station was established at each of the Grain Creek sites in a 1 ha opening. At Blackbear Creek microclimate was monitored in one opening of each size. A climate station was established in the center and a grid of temperature probes recorded 15 cm air, soil surface and 15 cm soil temperature at designated intervals across the opening. Microclimate was also recorded in the uncut control and an adjacent clearcut. It was monitored for 6 years in all locations. Windthrow has been monitored regularly along systematically established transects. Natural regeneration is being assessed on the openings to determine if it might be a viable regeneration option. Natural regeneration ingress densities are being monitored on 1,164 1 m² plots, equally distributed among the three opening sizes (0.03 ha, 0.13 ha, and 1.0 ha) and randomly located within selected openings in each opening size. On one-half of the plots, scarification removed all vegetation and soil organic layers to create a mineral soil seedbed. The remaining one-half of the plots were not scarified. One-half of the scarified plots and one-half of the non-scarified plots were artificially seeded with spruce and subalpine fir seed and the seed covered by a thin soil layer to determine if amount of seed limits natural regeneration success. Seed traps were placed on selected openings to assess...
Table 1. Effects of opening size and location (distance from center) within an opening on accumulated 5°C growing degree days between May 1 and September 30, 1994 in the 0.03, 0.13, and 1.0 ha partial cut treatments at Blackbear Creek.

<table>
<thead>
<tr>
<th>Aspec t</th>
<th>0 m Center</th>
<th>7 m</th>
<th>10 m Edge</th>
<th>0 m Center</th>
<th>14 m</th>
<th>20 m Edge</th>
<th>0 m Center</th>
<th>32 m</th>
<th>40 m</th>
<th>56 m Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>478</td>
<td>410</td>
<td>423</td>
<td>523</td>
<td>515</td>
<td>435</td>
<td>570</td>
<td>572</td>
<td>560</td>
<td>548</td>
</tr>
<tr>
<td>W</td>
<td>478</td>
<td>377</td>
<td>373</td>
<td>523</td>
<td>507</td>
<td>419</td>
<td>570</td>
<td>553</td>
<td>439</td>
<td>390</td>
</tr>
<tr>
<td>N</td>
<td>478</td>
<td>371</td>
<td>370</td>
<td>523</td>
<td>505</td>
<td>440</td>
<td>570</td>
<td>458</td>
<td>514</td>
<td>389</td>
</tr>
<tr>
<td>E</td>
<td>478</td>
<td>421</td>
<td>451</td>
<td>523</td>
<td>502</td>
<td>420</td>
<td>570</td>
<td>518</td>
<td>342</td>
<td>334</td>
</tr>
</tbody>
</table>

the abundance of natural seed rain.

Artificial regeneration is also being tested. Three species, subalpine fir, Engelmann spruce and lodgepole pine (*Pinus contorta*), which were present prior to harvest, were planted on five different planting treatments within all opening sizes. The five planting treatments included: three microsite locations, a large mineral screef (50 cm x 50 cm) created by a hand-held Hawke scarifier, and a control where the seedlings were planted in a grid with no emphasis on microsite. Microsite planting treatments included: raised sites to promote better drainage and to increase soil warming, protected sites that were behind obstacles to avoid mechanical damage from snow creep, and planting spots composed of rotten wood.

RESULTS AND DISCUSSION

Microclimate

These ESSFwC3 sites are cold and wet. Principal factors limiting seedling growth are short growing seasons, cool growing season temperatures, and in some situations, excess moisture. Due to the steepness of the slopes growing season frosts are uncommon. The group selection method limits soil warming compared to a clearcut, due to the high proportion of the logged area that is shaded by the adjacent forest canopy. This shading can have two detrimental effects. It can reduce the growing season by delaying the snow melt and it can cause lower air and soil temperatures during the growing season on northern and eastern aspects of the openings (Table 1). The accumulated degree days in the large opening (1.0 ha) are lower than those in a clearcut located below the Blackbear Creek installation. The degree days in the large openings at Upper Grain Creek and Lower Grain Creek were lower that those recorded at the Blackbear site (555, 605 and 639 respectively) in 1998 indicating a lower growth potential.

Natural Regeneration

Cone and seed production in these high elevation forests is highly variable, both in time and space. At the Blackbear Creek site, the number of seeds collected in traps was high in 1993 (167 filled seed m\(^{-2}\)), but much lower (<10 m\(^{-2}\)) during each of the following three years. At the two Grain Creek sites, the 1993 peak in seed numbers was very reduced (4 seeds m\(^{-2}\)) and numbers of seeds in other years were less than 1 seed m\(^{-2}\). Mean numbers of subalpine fir seed followed similar trends, but were generally smaller than mean numbers of spruce.

Five years after logging at the Blackbear Creek site mean densities of spruce and subalpine fir seedlings were higher on scarified sites (3.3 and 10.1 seedlings m\(^{-2}\)) than on non-scarified sites (0.3 and 2.0 seedlings m\(^{-2}\)). Artificially
applied seed had no significant effect on seedling densities, indicating that seed supply on this site was not limiting. Seedling densities were generally highest in the first year of measurement, the year following the peak seed rain, and declined steadily throughout the period of measurement. Subalpine fir seedling densities were smaller on large than on either medium or small openings, but spruce seedling densities showed no relationship to harvested opening size.

Natural regeneration densities were much smaller at the two Grain Creek sites than at the Blackbear Creek site, probably due to the much smaller natural seed rain at these sites. Five years after logging spruce seedling densities averaged only 0.2 seedlings m\(^{-2}\) on scarified and 0.3 seedlings m\(^{-2}\) on non-scarified sites. In contrast to the Blackbear Creek site, seedling densities were consistently higher on artificially seeded sites than on unseeded sites.

Seven years after logging, heights of spruce and subalpine fir natural regeneration were not sufficient to meet current height requirements contained in stocking standards for the area.

These results indicate that natural regeneration ingress may successfully regenerate openings of 1 ha or less, provided that a year of high seed production occurs shortly after logging. In addition, height requirements in stocking standards for the area would need to be adjusted. However, the unreliability of cone and seed production at these high elevations makes it very difficult to predict natural regeneration success after any given year of logging.

Artificial Regeneration

Fifth year results indicate that planted seedling growth and survival generally decrease with increasing elevation and decreasing opening size (Tables 2 and 3). One exception is spruce on the Blackbear Creek site where differences in growth are minimal between the medium and large opening.

Differences in seedling performance were smaller between microsites compared to opening sizes. Seedling survival and condition was lowest for all species on the control where there was no site preparation or microsite consideration. Seedling condition was generally better on the raised and rotten wood sites for both pine and subalpine fir especially on the smaller opening sizes.

Condition of spruce was better on any of the microsite treatments compared to the control, although no one

Table 2. Fifth year percent seedling survival (Values less than 50% are bolded).

<table>
<thead>
<tr>
<th>Site</th>
<th>Subalpine Fir</th>
<th>Lodgepole Pine</th>
<th>Engelmann Spruce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 ha 0.13 ha</td>
<td>0.03 ha 1.0 ha</td>
<td>0.13 ha 0.03 ha</td>
</tr>
<tr>
<td>Blackbear</td>
<td>89.4 84.1</td>
<td>89.7 75.0</td>
<td>77.1 55.1</td>
</tr>
<tr>
<td>Upper Grain</td>
<td>73.5 66.1</td>
<td>65.2 75.0</td>
<td>56.5 52.6</td>
</tr>
<tr>
<td>Lower Grain</td>
<td>66.2 56.4</td>
<td>37.5 72.3</td>
<td>39.6 13.7</td>
</tr>
<tr>
<td>All sites</td>
<td>76.6 69.1</td>
<td>64.7 74.1</td>
<td>58.0 40.6</td>
</tr>
</tbody>
</table>

Table 3. Five year height growth (1999 height minus planting height in cm).

<table>
<thead>
<tr>
<th>Site</th>
<th>Subalpine Fir</th>
<th>Lodgepole Pine</th>
<th>Engelmann Spruce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 ha 0.13 ha</td>
<td>0.03 ha 1.0 ha</td>
<td>0.13 ha 0.03 ha</td>
</tr>
<tr>
<td>Blackbear</td>
<td>29.9 28.0</td>
<td>22.6 53.2</td>
<td>39.8 30.0</td>
</tr>
<tr>
<td>Upper Grain</td>
<td>17.8 12.7</td>
<td>10.8 38.1</td>
<td>25.3 22.5</td>
</tr>
<tr>
<td>Lower Grain</td>
<td>16.1 11.0</td>
<td>9.3 41.3</td>
<td>18.7 15.7</td>
</tr>
<tr>
<td>All sites</td>
<td>22.2 18.7</td>
<td>16.1 42.2</td>
<td>25.3 24.1</td>
</tr>
</tbody>
</table>
microsite was consistently better than the others. Significant height growth differences only occurred for spruce where seedlings were taller on the protected treatment compared to the raised, screef and rotten wood treatments. The raised treatment resulted in the largest diameters for all species and they were significantly larger compared to the protected and control treatments for subalpine fir and pine respectively. Diameter of subalpine fir seedlings in rotten wood were equivalent to those in the raised treatment and significantly larger than those in the protected treatment.

Will free-growing and stocking standards be met? Survival is a concern on some treatment combinations as is evident in Table 1. At the current growth rates on the best microsite treatments, minimum heights contained in current free-growing and stocking standards may be difficult to achieve for pine (1.6 m) in the small openings on all sites and the medium openings at Lower Grain Creek. Minimum height requirements may be difficult to achieve with subalpine fir (0.8 m) on the small and medium openings at Lower Grain Creek. Spruce would make the current minimum height (0.8 m) standards for free growing on all sites and opening sizes. These estimates may under-estimate the ability to meet height standards since height growth is expected to accelerate over the next few years.

Windthrow

A total of 43 trees have fallen over the past 4.5 years representing 3.4% of the total number of trees permanently marked on the windthrow transect lines. Of these trees, 81% were dead prior to falling (2 spruce and 33 subalpine fir) and the few live trees (2 spruce and 5 subalpine-fir) were scattered over the treatment units. The least windthrow occurred in the uncut control areas (2.6%) compared to the small (3.2%), medium (4.1%) and large (4.2%) treatment units. The data indicate the weaker, dead trees falling at a slightly higher rate in the harvested treatment units than found in uncut forest.

SUMMARY

The replicated trial has provided information that is encouraging and has indicated some areas of concern. Very small openings especially at very high elevations may be challenging to regenerate artificially. Seedling performance in larger openings (over 0.1 ha) is more promising. Pine performance on the small and some medium openings is very poor. Conversely spruce on the right microsite is performing adequately across all harvesting treatments. Natural regeneration may be a suitable option in years of abundant cone and seed production but not in other years. Overall this group selection silvicultural system appears to be a viable option for both timber management and maintaining caribou habitat. Further testing of this system during the adaptive management phase will help to refine management techniques.

REFERENCES:

Province of British Columbia. 1995. The Cariboo-Chilcotin land-use plan 90-day implementation process final report. Victoria, B.C.

CONTACT

Teresa Newsome
Research Silviculturist
E-mail: Teresa.Newsome@gems8.gov.bc.ca

Harold Armleder
Wildlife Habitat Researcher
E-mail: Harold.Armleder@gems6.gov.bc.ca

Micheala Waterhouse
Silvicultural Systems Researcher
E-mail: Michaela.Waterhouse@gems4.gov.bc.ca

Ordell Steen
Research Ecologist
E-mail: Ordell.Steen@gems9.gov.bc.ca