A FIELD GUIDE TO
FOREST SITE IDENTIFICATION AND
INTERPRETATION FOR THE
CARIBOO FOREST REGION

O. A. Steen and R. A. Coupé

Ministry of Forests
Research Program

1997
AUTHORS AND AFFILIATIONS

Ordell Steen, Research Ecologist, Cariboo Forest Region, Ministry of Forests, 200 - 640 Borland Street, Williams Lake, B.C. V2G 4T1

Ray Coupé, Research Ecologist, Cariboo Forest Region, Ministry of Forests, 200 - 640 Borland Street, Williams Lake, B.C. V2G 4T1

Canadian Cataloguing in Publications Data

Steen, O. A.

A field guide to forest site identification and interpretation for the Cariboo Forest Region

Includes bibliographical references: p.

QH541.5.F6S73 1998 581.7'37'09711 C98–960063–7

© 1997 Province of British Columbia

Published by the Research Branch, Ministry of Forests, 712 Yates Street, Victoria, B. C. V8W 3E7

Citation:

Copies of this and other Ministry of Forests titles are available from Crown Publications Inc., 521 Fort Street, Victoria, B.C. V8W 1E7
ACKNOWLEDGEMENTS

The classification and interpretations presented in this field guide have evolved over the past 20 years through the collective work of several individuals involved in the many phases of the Cariboo Forest Region ecological classification project.

W.J. Watt coordinated the ecological classification project in the Cariboo Forest Region from 1977 to 1983. During this time and in subsequent years, he provided important guidance on observation and interpretation of site and soil attributes. Several individuals summarized and interpreted data and developed preliminary ecological classifications and draft ecosystem guides: R. Annas, C. Bowling, B. Coupé, R. Dawson, K. Iverson, L. Lemmen, I. Leung, S. Mah, K. Mayes, P. McAuliffe, R. Meister, N. Stromberg, A. vonSaken, M. Waterhouse, and A. Yee. A. Yee contributed very significantly towards the development of initial approaches to ecological classification and description in the Cariboo Forest Region. In addition to these individuals, many others collected field data from the more than 3000 plots that form the basis of the classification in this guide. A. Roberts, F. Boas, and W. Noble identified difficult vascular, bryophyte, and lichen specimens.

This field guide is based on the provincially correlated ecological classification made possible by the Ministry of Forests Ecological Classification Correlation Program. D. Meidinger directed this correlation effort and worked closely with all forest regions in the provincial synthesis of ecological classification data. We have benefited from his enthusiasm, technical insights, and supportive role. T. Fleming, S. Mah, C. Cadrin, A. Inselberg, and K. Yearsley provided data analyses and interpretations for the provincial correlation project. D. Lloyd, C. DeLong, F. Nuszdorfer, A. Banner, and others helped to resolve correlation and mapping issues between the Cariboo and other forest regions.

The format and content of this guide have benefited greatly from guides to ecosystems for other forest regions in British Columbia. Many of the site and soil description aids in the appendices have been adapted from these other regional guides. The text of sections 1–3 has been modified from text prepared by T. Braumandl, R. Green, C. DeLong, A. Banner, and D. Meidinger.
Forest health information in Section 7 was provided by L. Rankin. An initial draft of the silviculture considerations tables was modified and further developed with input from several experienced silviculturists in the Cariboo Forest Region. We thank A. Randall, K. Day, P. Hendrix, C. Gibson-Robertson, M. Seilis, D. Harris, D. Greeley, G. White, A. Lacourcier, T. Harding, C. von Hahn, W. Nuyens, K. Peel, G. McIntosh, M. Rungi, N. Daintith, T. Newsome, and the others who contributed to this section.

D. Meidinger made many valuable review comments and suggestions for all sections of the guide. Other valuable review comments were provided by A. MacKinnon, A. Banner, T. Braumandl, E. Hamilton, J. McClarnon, N. Daintith, T. Newsome, and P. Nystedt.

We thank B. Hammerstron of Image House Inc. in Williams Lake for his creativity and very important role in the technical production aspects of this guide.

P. Nystedt and others of the Production Resources Group of the Ministry of Forests Research Branch provided very important assistance in developing the presentation format of this guide and facilitating many aspects of its final production. S. Smith did the English edit.

Plant illustrations by the following artists have been used in the guide: F.L. Beebe, G. Bishop, T.C. Brayshaw, M. Bryant, P. Drukker-Brammall, P. Frank, G.F. Harcombe, A. Hassen, S. Mitchell, B.C. Newton, S.D. Salkeld, E.J. Stephen, and R.A. With. We thank the Royal British Columbia Museum and the British Columbia Ministry of Environment, Lands and Parks for permission to use plant illustrations from their publications.

To all others who provided advice or logistical support in the many phases of this project we extend our thanks.
TABLE OF CONTENTS

AUTHORS AND AFFILIATIONS ... ii

ACKNOWLEDGEMENTS ... iii

PART 1

1 **INTRODUCTION** ... 1 - 1
 - Objectives and Scope ... 1 - 1
 - Other Sources of Information ... 1 - 2
 - Guide Contents and Limitations .. 1 - 3
 - Format of the Guide ... 1 - 4
 - Training ... 1 - 4

2 **BIOGEOCLIMATIC ECOSYSTEM CLASSIFICATION SYSTEM** .. 2 - 1
 - Ecosystems .. 2 - 1
 - Synopsis of BEC System ... 2 - 1
 - Vegetation Classification ... 2 - 2
 - Climatic (Zonal) Classification ... 2 - 2
 - Site Classification .. 2 - 6
 - Seral Classification ... 2 - 8

3 **PROCEDURES FOR SITE DESCRIPTION AND IDENTIFICATION** ... 3 - 1
 - Identifying Biogeoclimatic Units .. 3 - 2
 - Describing and Identifying Site Units .. 3 - 3

4 **ENVIRONMENT OF THE CARIBOO FOREST REGION** .. 4 - 1
 - Physiography ... 4 - 1
 - Climate ... 4 - 4
 - Vegetation and Soils .. 4 - 6

5 **BIOGEOCLIMATIC UNITS OF THE CARIBOO FOREST REGION** ... 5•1 - 1
 - Introduction ... 5•1 - 1
<table>
<thead>
<tr>
<th>Site Unit</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Alpine Tundra Zone</td>
<td>5.2</td>
</tr>
<tr>
<td>BG</td>
<td>Bunchgrass Zone</td>
<td>5.3</td>
</tr>
<tr>
<td>CWH</td>
<td>Coastal Western Hemlock Zone</td>
<td>5.4</td>
</tr>
<tr>
<td>ESSF</td>
<td>Engelmann Spruce–Subalpine Fir Zone</td>
<td>5.5</td>
</tr>
<tr>
<td>IDF</td>
<td>Interior Douglas-fir Zone</td>
<td>5.7</td>
</tr>
<tr>
<td>MS</td>
<td>Montane Spruce Zone</td>
<td>5.8</td>
</tr>
<tr>
<td>MH</td>
<td>Mountain Hemlock Zone</td>
<td>5.9</td>
</tr>
<tr>
<td>SBPS</td>
<td>Sub-Boreal Pine–Spruce Zone</td>
<td>5.10</td>
</tr>
<tr>
<td>SBS</td>
<td>Sub-Boreal Spruce Zone</td>
<td>5.11</td>
</tr>
</tbody>
</table>

6 SITE UNITS OF THE CARIBOO FOREST REGION

Guide to Site Unit Descriptions | 6.1

AT - Alpine Tundra Zone | 6.2
BGxh3 - BG Very Dry Hot Subzone, Fraser Variant | 6.3
BGxw2 - BG Very Dry Warm Subzone, Alkali Variant | 6.4
CWH - Coastal Western Hemlock Zone | 6.5
ESSFc2 - ESSF Dry Cold Subzone, Thompson Variant | 6.6
ESSFmv1 - ESSF Moist Very Cold Subzone, Nechako Variant | 6.7
ESSFwc3 - ESSF Wet Cold Subzone, Cariboo Variant | 6.8
ESSFwk1 - ESSF Wet Cool Subzone, Cariboo Variant | 6.9
ESSFxv1 - ESSF Very Dry Cold Subzone, West Chilcotin Variant | 6.10
ESSFxv2 - ESSF Very Dry Very Cold Subzone, Big Creek Variant | 6.11
ICHdk - ICH Dry Cool Subzone | 6.12
ICHmk3 - ICH Moist Cool Subzone, Horsefly Variant | 6.13
ICHmw3 - ICH Moist Warm Subzone, Thompson Variant | 6.14
ICHwk2 - ICH Wet Cool Subzone, Quesnel Variant | 6.15
ICHwk4 - ICH Wet Cool Subzone, Cariboo Variant | 6.16
IDFdk1 - IDF Dry Cool Subzone, Thompson Variant | 6.17
IDFdk3 - IDF Dry Cool Subzone, Fraser Variant | 6.18
IDFdk4 - IDF Dry Cool Subzone, Chilcotin Variant | 6.19
IDFdw - IDF Dry Warm Subzone | 6.20
IDFmw2 - IDF Moist Warm Subzone, Thompson Variant | 6.21
IDFxm - IDF Very Dry Mild Subzone | 6.22
IDFxw - IDF Very Dry Warm Subzone | 6.23
MHmm2 - MH Moist Maritime Subzone, Leeward Variant ... 6.25 - 1
MSdc2 - MS Dry Cold Subzone, Tatlayoko Variant 6.26 - 1
MSdv - MS Dry Very Cold Subzone 6.27 - 1
MSxk - MS Very Dry Cool Subzone 6.28 - 1
MSxv - MS Very Dry Very Cold Subzone 6.29 - 1
SBPSdc - SBPS Dry Cold Subzone 6.30 - 1
SBPSmc - SBPS Moist Cold Subzone 6.31 - 1
SBPSmk - SBPS Moist Cool Subzone 6.32 - 1
SBPSxc - SBPS Very Dry Cold Subzone 6.33 - 1

PART 2

SBSdw1 - SBS Dry Warm Subzone, Horsefly Variant 6.34 - 1
SBSdw2 - SBS Dry Warm Subzone, Blackwater Variant ... 6.35 - 1
SBSmc1 - SBS Moist Cold Subzone, Moffat Variant 6.36 - 1
SBSmc2 - SBS Moist Cold Subzone, Babine Variant 6.37 - 1
SBSmh - SBS Moist Hot Subzone 6.38 - 1
SBSmm - SBS Moist Mild Subzone 6.39 - 1
SBSmw - SBS Moist Warm Subzone 6.40 - 1
SBSwk1 - SBS Wet Cool Subzone, Willow Variant 6.41 - 1

7 SILVICULTURE CONSIDERATIONS

Background. ... 7.1 - 1
ESSFwc3 - ESSF Wet Cold Subzone, Cariboo Variant 7.8 - 1
ESSFwk1 - ESSF Wet Cool Subzone, Cariboo Variant 7.9 - 1
ESSFxv1 - ESSF Very Dry Very Cold Subzone, West Chilcotin Variant 7.11 - 1
ICHdk - ICH Dry Cool Subzone 7.13 - 1
ICHmk3 - ICH Moist Cool Subzone, Horsefly Variant 7.14 - 1
ICHwk2 - ICH Wet Cool Subzone, Quesnel Variant 7.16 - 1
ICHwk4 - ICH Wet Cool Subzone, Cariboo Variant 7.17 - 1
IDFdk3 - IDF Dry Cool Subzone, Fraser Variant 7.19 - 1
IDFdk4 - IDF Dry Cool Subzone, Chilcotin Variant 7.20 - 1
IDFxm - IDF Very Dry Mild Subzone 7.23 - 1
IDFxw - IDF Very Dry Warm Subzone 7.24 - 1
MSxv - MS Very Dry Very Cold Subzone 7.29 - 1

Subsection numbers are the same as for the equivalent biogeoclimatic unit in Section 6. Missing subsections indicate biogeoclimatic units for which silviculture considerations have not yet been prepared.
SBPSdc - SBPS Dry Cold Subzone ... 7•30 - 1
SBPSmk - SBPS Moist Cool Subzone 7•32 - 1
SBPSxc - SBPS Very Dry Cold Subzone 7•33 - 1
SBSDw1 - SBS Dry Warm Subzone, Horsefly Variant 7•34 - 1
SBSDw2 - SBS Dry Warm Subzone, Blackwater Variant 7•35 - 1
SBSmc1 - SBS Moist Cold Subzone, Moffat Variant 7•36 - 1
SBSmc2 - SBS Moist Cold Subzone, Babine Variant 7•37 - 1
SBSmh - SBS Moist Hot Subzone ... 7•38 - 1
SBSmw - SBS Moist Warm Subzone 7•40 - 1
SBSwk1 - SBS Wet Cool Subzone, Willow Variant 7•41 - 1

8 LITERATURE CITED ... 8 - 1

APPENDICES

1 Equivalence of current provincially correlated BEC codes and the pre-correlation classification codes for ecosystems in the Cariboo Forest Region ... A•1 - 1
2 Tree species codes and symbols ... A•2 - 1
3 Ecoregion classification of the Cariboo Forest Region A•3 - 1
4 Relative soil moisture regime identification key A•4 - 1
5 Actual soil moisture regime relationship to relative soil moisture regime and biogeoclimatic unit A•5 - 1
6 Soil nutrient regime identification A•6 - 1
7 Guide to identification of surficial geological materials A•7 - 1
8 Guide to the common rock types of the Cariboo Forest Region ... A•8 - 1
9 Guide to field soil texturing ... A•9 - 1
10 Soil particle size classification .. A•10 - 1
11 Guide to the identification of soil orders and great groups ... A•11 - 1
12 Characteristics of humus form orders A•12 - 1
13 Common and scientific names of plant species mentioned in this guide ... A•13 - 1
14 Comparison charts for visual estimation of foliage cover ... A•14 - 1
15 Description of vegetation subcomplexes listed in silviculture considerations tables ... A•15 - 1
TABLES

1 Subzone name codes ... 2 - 5
2 Important site and soil features for identifying site units 3 - 4
3 Environmental characteristics of BG subzones in
 the Cariboo Forest Region ... 5•3 - 2
4 Environmental characteristics of ESSF subzones and
 variants in the Cariboo Forest Region 5•5 - 2
5 ESSF vegetation table - zonal sites 5•5 - 2
6 Environmental characteristics of ICH subzones and
 variants in the Cariboo Forest Region 5•6 - 2
7 ICH vegetation table - zonal sites ... 5•6 - 2
8 Environmental characteristics of IDF subzones and
 variants in the Cariboo Forest Region 5•7 - 2
9 IDF vegetation table - zonal sites .. 5•7 - 2
10 Environmental characteristics of MS subzones and
 variants in the Cariboo Forest Region 5•8 - 2
11 MS vegetation table - zonal sites .. 5•8 - 2
12 Environmental characteristics of SBPS subzones
 in the Cariboo Forest Region .. 5•10 - 3
13 SBPS vegetation table - zonal sites .. 5•10 - 3
14 Environmental characteristics of SBS subzones and
 variants in the Cariboo Forest Region 5•11 - 2
15 SBS vegetation table - zonal sites ... 5•11 - 2
16 Vegetation potential classes .. 7•1 - 13

FIGURES

1 Location of the Cariboo Forest Region 1 - 1
2 Mesoslope position diagram .. 3 - 5
3 Physiographic subdivisions of the Cariboo Forest Region 4 - 2
4 Example silviculture considerations table 7•1 - 8
APPENDIX 4
RELATIVE SOIL MOISTURE REGIME IDENTIFICATION KEY

This key is an aid for identifying relative soil moisture regime using readily observable site features. It should be applied with caution, as all possible combinations of site factors potentially encountered have not been incorporated into the key. As well, the season in which observations are being made may affect the user’s interpretation of site factors. For example, a water table or seepage water may exist for a brief period immediately following snow melt in the spring in an otherwise moderately well-drained site. Also, soils with two or more contrasting soil textures will require an interpretation of their combined effect on the soil’s ability to hold moisture.

When more than one moisture regime is indicated in the key, the user should evaluate the combined attributes of the site relative to the range of variability of each attribute specified in the key. A moisture regime should then be selected based on the relative position of the site attributes along the range of variability specified in the key. For example, if the soil texture is at the fine end of the range given, the slope gradient is at the gentler end of the range given, and the soil depth is at the deeper end of the range given, then the wetter of the two moisture regimes given should be selected.

Definition of Terms Used in Soil Moisture Regime Key

Ridge crest is uppermost portion of hill or other raised land area; usually with convex slope shape.

Upper slope is upper portion of slope below the crest; usually with convex slope shape.

Middle slope is portion of the slope between the upper and lower slope position; slope shape is usually neither distinctly concave nor convex, but straight.

Lower slope is slope portion near the base of the slope where slope gradient is generally decreasing; slope shape is generally concave.

Toe slope is area at base of slope demarcated from adjacent lower slope position by an abrupt decrease in slope gradient; generally level areas (<5% gradient) at base of slope, where moisture status is influenced by adjacent slope.

SE to W is any slope aspect from 135 to 280°, inclusive.
Level (flats) is any level area sufficiently removed from a slope that moisture status is not affected by runoff from a slope; the surface may be undulating with very low relief raised areas and very short slopes; surface shape is generally straight and has no clearly defined aspect.

Depression is an area that slopes upward in all directions; slope shape is concave; depressions usually occur at base of a slope or in level topography.

Soil depth is depth from mineral soil surface to a strong root-restricting layer such as bedrock or strongly compacted or cemented materials (e.g., hardpan).

Climate dry is climate of any of the following biogeoclimatic subzones: BGxh, BGxw, IDFxw, IDFxm, SBPSxc.

Gleyed soils are soils influenced by periodic or sustained water saturation as indicated by gleyed colors (dull yellowish, blue, or olive) or prominent mottles (reddish or orange spots, or blotches at least 1 mm in cross-section and occupying at least 2% of the exposed, unsmeread soil face) occurring throughout a layer at least 10 cm thick and within 50 cm of the mineral surface; strongly gleyed soils have a dominant colour of dull blue, olive, or yellowish resulting from sustained water saturation and reducing conditions.

Free water is water in excess of that which can be held against gravity by the soil particles; soil moisture in excess of field capacity.

Water table is the surface of a zone of prolonged water saturation and free water; primarily on level or gently sloping sites.

Soil particle size refers to the particle size composition of the soil including the proportion of sand (0.05–2.0 mm), silt (0.002–0.05 mm), and clay (<0.002 mm) sized particles as well as the proportion of coarse fragments (>2.0 mm). Very coarse, Coarse, Medium, Fine, and Very fine particle size classes are defined in Appendix 10.

Seepage refers to saturated soils resulting from downslope subsurface movement of free water, generally above an impeding layer; to be considered seepage, the volume of soil water movement and the resulting duration of soil saturation should be sufficient to affect vegetation or soil colour.
Moisture regime code refers to relative soil moisture regime:

- **0** = very xeric
- **1** = xeric
- **2** = subxeric
- **3** = submesic
- **4** = mesic
- **5** = subhygric
- **6** = hygric
- **7** = subhydric
- **8** = hydric

Electrified cat’s-tail moss
Rhytidiadelphus triquetrus

Pipecleaner moss
Rhytidiopsis robusta

Wavy-leaved moss
Dicranum polysetum
APPENDICES

RELATIVE SOIL MOISTURE REGIME IDENTIFICATION KEY

RIDGE CRESTS

UPPER SLOPES

Soils shallow (<50 cm)

FALSE

TRUE

Slope >35%

y

n

y

Soil particle size coarse or very coarse

y

n

y

n

Exposed bedrock dominant

y = 0

n = 1

Aspect SE to W

y = 1

n = 2

Slope position crest or aspect SE to W and slope >20%

y = 1-2

n = 2

Soil depth <1m

y = 2

n = 2-3

a. Soil depth <1m or
b. Climate dry and aspect SE to W and slope >20%

y = 2-3

n = 3

MIDDLE SLOPES

Water table or seepage or gleyed soils within 80 cm

FALSE

TRUE

Slope >35%

y

n

y

Soil particle size coarse or very coarse

y

n

y

n

Water table or persistent seepage or strongly gleyed soils within 30 cm

y = 7-8

n = 5-6

Soil particle size very coarse or soil depth <1m or aspect SE to W

y = 1-2

n = 2-3

Aspect SE to W and slope >20%

y = 2

n = 3

Soil depth <1m or aspect SE to W

y = 2

n = 3

a. Soil depth <1m or
b. Climate dry and aspect SE to W and slope >20%

y = 3

n = 4

LOWER OR TOE SLOPES OR DEPRESSION

Water table or persistent seepage or gleyed soils within 80 cm

FALSE

TRUE

Soil particle size coarse or very coarse

y = 4

n = 5

Water table or strongly gleyed soils present within 30 cm

y = 7-8

n = 5-6

LEVEL (FLATS)

Water table or gleyed soils present within 80 cm

FALSE

TRUE

Soil particle size coarse or very coarse

y = 2

n = 3

Soil particle size fine

y = 4-5

n = 4