The mountain pine beetle is the most damaging biotic disturbance agent in mature lodgepole pine in western Canada. The current beetle outbreak in British Columbia is unprecedented in scale and will have unavoidable ecological and economic impacts. Unfortunately, this beetle outbreak may be a harbinger to an increased pest threat to Canadian forests. The abundance of mature age class timber in the inventory and a trend to warmer, drier summers and infrequent cold winter weather can combine to alter the balance between pest and host in forest ecosystems.

Major economic and non-market values accrue from forests. Sustainability of these forest values will be challenged by an increase in forest pest disturbances. The extensive character of Canadian forestry does not remove the risks of pest outbreaks. Maintaining forest resource values will benefit from a renewed commitment to reducing the impacts of forest pest disturbances. The key elements of this commitment are forest health monitoring, identification of high threat stands and pathways, prompt direct control activity, and landscape level reduction of stand susceptibility through preventive forestry practices. Forests are too valuable to not effectively respond to pest disturbances.
The Mountain Pine Beetle
A Synthesis of Biology, Management, and Impacts on Lodgepole Pine

edited by Les Safranyik and Bill Wilson

Sponsored by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service.

Natural Resources Canada,
Canadian Forest Service,
Pacific Forestry Centre
Victoria, BC
Canada

2006
Library and Archives Canada Cataloguing in Publication

Safranyik, L., 1938-

Includes bibliographical references.
Available also on the Internet and on CD-ROM.
ISBN 0-662-42623-1
Cat. no.: Fo144-4/2006E

SB945.M78S33 2006 634.9'7516768 C2006-980019-7
This book presents a synthesis of published information on mountain pine beetle (*Dendroctonus ponderosae* Hopkins [Coleoptera: Scolytidae]) biology and management with an emphasis on lodgepole pine (*Pinus contorta* Dougl. ex Loud. var. *latifolia* Engelm.) forests of western Canada. Intended as a reference for researchers as well as forest managers, the book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns. The chapters on biology cover taxonomy, life history and habits, distribution, insect-host tree interactions, development and survival, epidemiology, and outbreak history. The management section covers management strategy, survey and detection, proactive and preventive management, and decision support tools. The chapters on socioeconomic aspects include an economic examination of management programs and the utilization of post-beetle salvage timber in solid wood, panelboard, pulp and paper products.

Le présent ouvrage offre une synthèse de l’information publiée concernant le dendroctone du pin ponderosa (*Dendroctonus ponderosae* Hopkins [Coleoptera: Scolytidae]), sa biologie ainsi que la lutte qu’on lui fait. L’accent porte sur les forêts de pins tordus latifoliés (*Pinus contorta* Dougl. ex Loud. var. *latifolia* Engelm.) de l’Ouest du Canada. Préparé à l’intention des chercheurs et des aménagistes des forêts comme ouvrage de référence, ce dernier traite de trois sujets principaux : la biologie du dendroctone du pin ponderosa, la lutte qu’on lui fait et les questions socioéconomiques qui y sont liées. Les chapitres sur la biologie comprennent la taxonomie, le cycle de vie et les mœurs, la répartition, l’interaction entre l’insecte et l’arbre hôte, son développement et sa survie ainsi que l’épidémiologie et l’historique des infestations. La section sur la lutte et la gestion traite de stratégies de lutte, de détection et de relevés, de lutte préventive et proactive ainsi que d’outils d’aide à la décision. Les chapitres sur les aspects socioéconomiques examinent, d’un point de vue économique, les programmes d’aménagement et l’utilisation du bois récupéré après le passage du dendroctone dans la fabrication de produits en bois massif, de panneaux ainsi que des pâtes et papiers.

Disclaimer:

Opinions expressed in this book are those of the authors and not necessarily those of the Canadian Forest Service or the Government of Canada.

Mention in this volume of any commercial product or service does not constitute endorsement of such by the Canadian Forest Service or the Government of Canada.
Contents

Part 1 – Biology

Chapter 1 – *The Biology and Epidemiology of the Mountain Pine Beetle in Lodgepole Pine Forests* 3
Les Safranyik and Allan L. Carroll

Chapter 2 – *Forest, Climate and Mountain Pine Beetle Outbreak Dynamics in Western Canada*. 67
Steve W. Taylor, Allan L. Carroll, Rene I. Alfaro, and Les Safranyik

Chapter 3 – *Effects of the Mountain Pine Beetle on Lodgepole Pine Stand Structure and Dynamics* 95
Terry L. Shore, Les Safranyik, Brad C. Hawkes, and Steve W. Taylor

Part 2 – Management

Chapter 4 – *Principles and Concepts of Management* 117
Terry L. Shore, Les Safranyik, and Roger J. Whitehead

Chapter 5 – *Detection, Mapping, and Monitoring of the Mountain Pine Beetle*... 123
Michael A. Wulder, Caren C. Dymond, Joanne C. White, and Bob Erickson

Chapter 6 – *Direct Control: Theory and Practice*. 155
Allan L. Carroll, Terry L. Shore, and Les Safranyik

Chapter 7 – *Preventive Management* 173
Roger J. Whitehead, Les Safranyik, and Terry L. Shore

Chapter 8 – *Decision Support Systems* 193
Terry L. Shore, Bill G. Riel, Les Safranyik, and Andrew Fall

Part 3 – Socioeconomic impacts

Chapter 9 – *Characteristics and Utilization of Post-Mountain Pine Beetle Wood in Solid Wood Products* 233
Tony Byrne, Cameron Stonestreet, and Brian Peter

Chapter 10 – *Impact of the Mountain Pine Beetle on Pulp and Papermaking* 255
Paul Watson

Chapter 11 – *Economics in the Management of Mountain Pine Beetle in Lodgepole Pine in British Columbia: A Synthesis* 277
William L. Wagner, Bill Wilson, Brian Peter, Sen Wang, and Brad Stennes

Index 301
Editors

Safranyik, Les
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: lsafranyik@pfc.cfs.nrcan.gc.ca

Wilson, Bill
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bwilson@pfc.cfs.nrcan.gc.ca

Contributors

Alfaro, Rene I.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: ralfaro@pfc.cfs.nrcan.gc.ca

Byrne, Tony
Forintek Canada Corporation
2665 East Mall, Vancouver, BC, Canada V6T 1W5
e-mail: byrne@van.forintek.ca

Carroll, Allan L.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: acarroll@pfc.cfs.nrcan.gc.ca

Dymond, Caren C.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: cdymond@pfc.cfs.nrcan.gc.ca

Erickson, Bob
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bericks@pfc.cfs.nrcan.gc.ca

Fall, Andrew
Gowland Technologies
220 Old Mossy Road, Victoria, BC, Canada V9E 2A3
e-mail: fall@cs.sfu.ca
Hawkes, Brad C.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bhawkes@pfc.cfs.nrcan.gc.ca

Peter, Brian
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bpeter@pfc.cfs.nrcan.gc.ca

Riel, Bill G.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: briel@pfc.cfs.nrcan.gc.ca

Safaranyik, Les
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: lsafranyik@pfc.cfs.nrcan.gc.ca

Shore, Terry L.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: tshore@pfc.cfs.nrcan.gc.ca

Stennes, Brad
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bstennes@pfc.cfs.nrcan.gc.ca

Stonestreet, Cameron
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: cameron.stonestreet@gov.bc.ca

Taylor, Steve W.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: staylor@pfc.cfs.nrcan.gc.ca
Wagner, William L.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: wiwagner@pfc.cfs.nrcan.gc.ca

Wang, Sen
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: senwang@pfc.cfs.nrcan.gc.ca

Watson, Paul
Pulp and Paper Research Institute of Canada
3800 Westbrook Mall, Vancouver, BC, Canada V6S 2L9
e-mail: pwatson@paprican.ca

White, Joanne C.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: joanne.white@pfc.cfs.nrcan.gc.ca

Whitehead, Roger J.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: rwhitehead@pfc.cfs.nrcan.gc.ca

Wilson, Bill
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: bwilson@pfc.cfs.nrcan.gc.ca

Wulder, Michael A.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
e-mail: mwulder@pfc.cfs.nrcan.gc.ca
Preface

Les Safranyik, Bill Wilson, and Allan L. Carroll

Our main objective in producing this book is to provide a comprehensive review and synthesis of the biology and management of the mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae]) in lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm.) with a special emphasis on western Canada. In addition, the synthesis is intended to assist in identifying the incremental research necessary to effectively respond to the major beetle epidemic in British Columbia and to provide a benchmark to measure the research contribution of Natural Resources Canada’s Mountain Pine Beetle Initiative.

The extensive lodgepole pine forests in western North America provide a wide range of values, including scenic and recreational areas, watersheds, habitat for wildlife, grazing for livestock, and raw materials for wood and wood fibre products. However, lodgepole pines are relatively transient successional pioneers subject to frequent natural disturbances, particularly from wildfires and from insects such as the mountain pine beetle. This creates significant challenges for forest managers. These challenges are further complicated by the apparent dependence of lodgepole pine upon disturbances related to fire and the mountain pine beetle. In the absence of disturbance, lodgepole pine is normally replaced by late-successional species such as spruce and fir. The mountain pine beetle’s preference for mature pine and the consequent increased fuel loading and wildfire potential, in combination with the serotinous cone character of lodgepole pine, assist in the perpetuation of lodgepole pine forests (Raffa and Berryman 1987). The combination of these factors tends to produce mixed-age, pine-dominated landscapes.

The mountain pine beetle is an indigenous insect in pine ecosystems throughout western North America. Beetle populations are prone to periodic landscape-level outbreaks where larger diameter trees of mature stands may be heavily depleted in a few years over large areas. During large outbreaks some younger stands may also suffer considerable mortality. The extensive tree mortality that occurs during these outbreaks has important economic and ecological impacts. Consequently, the biology and habits of the beetle, as well as the nature and effects of its interaction with its pine hosts, have been studied and foresters have attempted to manage the problem over the past century or so, both in Canada and the United States.

Despite the large inventory of pine, the increased vulnerability of these pine forests and the scale of outbreak impacts, little of the beetle research is recent. The last comprehensive publications on mountain pine beetle biology and management in lodgepole pine were published over two decades ago (Safranyik et al. 1974, 1975; Amman et al. 1977; Berryman et al. 1978; McGregor and Cole 1985; Amman and Cole 1983). Some of these publications are out of print and others are not readily available to forest managers. Furthermore, even though these past publications were generally comprehensive for their time, there have been
importantly advances since then. Accordingly, this book presents a synthesis of published information on mountain pine beetle biology and management with an emphasis on lodgepole pine forests. The goal is to interpret the diverse and often complex literature within the context of operational mountain pine beetle management. Where possible, sections have been augmented with new, unpublished information, especially on aspects of beetle population biology and epidemiology. As deemed appropriate, information sources relating to host species other than lodgepole pine (e.g., ponderosa pine, *Pinus ponderosa* and jack pine, *P. banksiana*) and other geographic regions (i.e., the western United States) were also included.

The book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns. As such, it is intended to be the most comprehensive treatment of mountain pine beetle to date. The chapters on biology cover taxonomy, life history and habits, area distribution, insect-host tree interactions, development and survival, epidemiology, and outbreak history. The management section covers management strategy, survey and detection, proactive and preventive management, and decision support tools. The chapters on socioeconomic aspects include an economic examination of management programs and the utilization of post-beetle salvage timber in solid wood, panelboard, pulp and paper products.

Our synthesis of mountain pine beetle biology highlights the importance of climate and the evolved interaction between the beetle with its associated blue stain fungi and lodgepole pine in determining the onset and course of beetle epidemics. Significant new information is presented on factors affecting change from endemic to incipient population phase, possible effects of climate change on range expansion, and the structure, growth and development of residual stands following epidemics.

In the management section, new information includes an assessment of remote sensing tools in beetle survey and detection, the role of decision aids in management programs, and the potential of preventive forestry practices to reduce losses from the mountain pine beetle.

The synthesis of the economic aspects of management points out the relatively minor role economic theory has played in beetle management and suggests ways to increase this vital component of decision making. The chapter on the characteristics of post-beetle salvage timber for manufacturing wood products reveals that in spite of considerable published information and local experience with the utilization of salvage timber, there are important gaps in knowledge, especially in relation to changes in the manufacturing qualities of trees as a function of time since death.

The material presented necessarily includes complex technical information, but the book should be a valuable reference for forest managers as well as researchers. As much as it was practicable, each chapter is self-contained and the need for the reader to refer to other chapters for additional information is kept to a minimum. Indeed, for readers with specific topics of interest, electronic copies of individual chapters are available for downloading from the Canadian Forest Service’s electronic bookstore at bookstore.cfs.nrcan.gc.ca.
Acknowledgements

Preparation of this publication was only possible through the hard work and commitment of the contributing authors. We greatly appreciated their willing cooperation. We acknowledge the prompt and thorough reviews provided on the various chapters of the book by the following persons: Brian Aukema, Hugh Barclay, Nicholas Coops, Tim Ebata, Ken Gibson, Vince Nealis, Ken Raffa and Ken White. Any errors or omissions are the responsibility of the book editors. The Canadian Forest Service, Pacific Forestry Centre publications group expeditiously brought the book into a publishable format - Joanne Stone and Steve Glover completed the editorial work.

This project was funded by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service.

LS, BW & AC
25.11.05

References

Index

Abies lasiocarpa, 72, 97
Adult(s), 6, 8, 12, 14, 36
Age-class dynamics, 79, 80, 83
Aggregation, 15, 21, 33, 161
Anti-aggregant, 17, 27, 31, 160, 161
verbenone, 161
Associated insects, 34, 46
Associated micro-organisms
 blue stain fungi, 13
 Ophiostoma, 23
 yeasts, 13
Attack-behaviour
 density, 17
 distribution, 9, 16, 17, 51
 period, 14
Attractant
 exo-brevicomin, 17, 161
 methods of application, 159, 160
 myrcene, 17, 161
 pheromones, 17, 160, 161
 trans-verbenol, 17, 161
Bark beetle
 mortality, 24, 25, 26, 31, 35, 36, 37, 38, 44, 46, 51, 71, 79
Beetle killed, 256, 266
Beetle pressure index, 202, 208
Behaviour, 15
Biogeoclimatic zones, 72, 97, 103
Bleaching, 256, 258, 259, 261, 263, 272, 273
Blue stain, 256, 257, 263, 273
Brightness, 256, 257, 258, 259, 261, 262, 263, 272
Brood
 density, 28
 mortality, 28
 production, 18
 survival, 28, 32, 33
Chemithermomechanical, 258, 270, 272
Chip fines, 257
Climate change
 effect on mountain pine beetle range expansion, 88, 89
Climate effects
 on beetles, 25, 26
 on host, 28, 79
Climatic suitability, 79
Climatic suitability index, 83
Coefficient of friction, 265
Competition, 17, 18, 31, 46
Cone habit
 open, 98
 serotinous, 98
Control
 biological, 157
 chemical, 159
 cultural and mechanical, 157
 history of, 156, 167
 logging practices, 158, 161
 natural agents, 35, 158
 peeling (bark removal), 157
 recommendations, 160
 sprinkling, 159
 submersion, 159
 theory of, 156
Crown classification systems, 290
Damage symptoms, 10, 12
Decision support systems, 119, 121, 194, 225
Dendrochronology, 69, 74
Direct control, 118, 156, 166, 282
 key principles, 119
 strategic objectives, 119
Disturbance agents, 279
Disturbance rate, 79, 81, 83
Economic damage, 288, 289
Economic impact, 156
Economic injury level (EIL), 289
Economic threshold (ET), 289
Economic valuation, 287
Ecosystem management, 286, 287, 290
Effluent, 265, 273
Egg production, 27
Eggs, 6, 10, 28
Elevation, 9, 10, 71, 72, 90, 97, 103
Emergence, 10, 13, 14
Endemic population, 37, 38, 51, 100, 118
Epidemic population, 118
Epidemiology, 32, 34, 37
Eruptive outbreak, 290
Extractives, 257, 263, 264, 265, 266, 268, 273, 275
Fecundity, 9, 31, 46
Fire, 157, 167
The Mountain Pine Beetle – A Synthesis of Biology, Management, and Impacts in Lodgepole Pine

return cycle, 79, 80, 81
suppression, 81
Food supply, 28, 44, 47
Forest economics, 277, 280, 281, 284, 286, 287, 288
Forest Insect and Disease Survey, 69
Forest protection economics, 286
Forester’s rotation, 283, 288
Gallery construction, 6, 27
Global warming, 280
Hazard, 195
Height of attack, 14, 18
Herbicides, 160
Holocellulose, 266
Host tree, 6, 9
characteristics, 18, 79
resistance, 20, 21, 23, 28, 31, 36, 38, 44, 46, 79, 118, 167
selection, 10, 16, 51
Humidity, 15, 29
Incipient population, 40, 101, 163, 165
Indirect control, 118
Induced attack, 161
Infestation
classification, 69
Infestation history
Canada, 5, 9, 44, 69, 71, 89, 159, 167
United States, 5, 159
Infestation severity, 72, 79
high, 69
low, 69, 72
moderate, 69, 72
Insecticides, 159
Insecticides, penetrating
ethylene dibromide, 159
naphthalene, 159
orthodichlorobenzene, 159
Insecticides, preventive
carbaryl, 159
lindane, 159
Insecticides, systemic
copper sulfate, 160
monosodium methanearsonate, 160
Integrated pest management, 289
Interaction
with blue stain fungi, 5
with host, 18
Kairomones, 160
Kraft, 256, 257, 263, 264, 265, 268, 270, 273
Larix occidentalis, 72
Larvae, 6, 7, 10, 12, 30
Life cycle, 10
Life history, 27, 51
Light effects, 15, 18
Lignin content, 266
Lodgepole pine
distribution, 97
ecological amplitude, 97
growth release, 103
importance, 96, 97
interaction with fire, 98
mortality from bark beetles, 100, 102
prevalence, 97
successional types, 98
Losses, 5, 48, 51, 117, 118
Management, 52
landscape level, 118, 166
objectives, 119
principles, 117, 162
recommendations, 168
stand level, 119, 158
strategies, 52, 90, 166
tactics, 52, 119, 157, 168
Management of lodgepole pine
access development, 179, 180
age and species mosaics, 182
beetle proofing, 184
density management, 182, 184
historical distribution and use, 174
integrating multiple management objectives, 184
landscape susceptibility, 177, 178
research and management history, 175
stand hygiene, 181
stand replacement, 179
stand susceptibility, 177, 178
Mating, 6, 10, 27
Mechanical, 256, 257, 265, 268, 270, 273
Minimum-cost-plus-loss, 280
Modelling, 45, 121
Models, 215
empirical, 215
landscape scale, 216
mechanistic, 215
spatially explicit, 216, 217, 221
Moisture content, 256, 257, 263, 266, 268, 270, 273
Monitoring, 166
Mountain pine beetle
- effects on diameter distribution, 101
- effects on stand structure, 100

MSMA
- 160, 161, 170, 171

Multivoltinism
- 89, 90

Mutualism
- 21, 23

Natural enemies
- 18, 26, 28, 34, 35, 36, 37, 40, 43, 44, 46

Nematodes
- 36

Olfaction
- 15

Optimal rotation
- 288

Orientation
- 13, 16

Outbreak
- decline, 40, 44
- development, 42, 81, 167
- distribution, 69, 72
- history, 69, 71, 72
- periodicity, 76
- population, 5, 25, 35, 39, 46, 156, 162
- suppression, 164, 165, 166, 167

Overview surveys
- 69

Oviposition
- 27

Parasites
- *Braconidae*, 34
- *Nematoda*, 36

Permeability
- 266, 267

Pheromone
- 17, 31, 33, 36

Phloem
- 20, 46
- quality, 18
- thickness, 18, 20, 31

Picea engelmannii
- 71, 72, 97

Picea glauca
- 72, 97

Pinchips
- 257

Pine risk index
- 210

Pine susceptibility index
- 209

Pinus albicaulis
- 71

Pinus banksiana
- 9, 89, 97

Pinus contorta
- 5, 6, 9, 12, 16, 18, 20, 23, 32, 34, 38, 41, 51, 52, 63, 71, 72, 74, 76, 79, 81, 89, 96, 97

Pinus flexilis
- 71

Pinus lambertiana
- 6

Pinus monticola
- 6, 9, 71

Pinus ponderosa
- 6, 9, 71, 96

Pinus strobus
- 9

Population
- 13, 46
- density, 46
- dynamics, 5, 27, 29, 117, 162
- management, 162, 165

Populus tremuloides
- 106

Populus tremuloides
- 72

Predators
- *Cleridae*, 34
- *Dolichopodidae*, 29
- effects of, 34, 37
- woodpeckers, 35

Preventive management
- 118, 156, 282
- key principle, 119

Protection
- 18, 159

Pseudotsuga menziesii
- 72

Pulp and paper industry
- 256, 272

Pupae
- 6, 8, 36

Rearing
- 31

Resin
- ducts, 20
- on beetles, 29, 32
- on micro-organisms, 32

Risk assessment
- 289, 290

Risk rating systems
- 195

Root disease
- 41

Sanitation logging
- 158, 161

Sap rot
- 268

Seedling establishment
- 104

SELES model of the mountain pine beetle
- 293

Semiochemicals
- 160

Serotinous
- 79

Sex determination
- 8

Sex ratio
- 27, 36

Shelf-life
- 273

Silvicultural treatments
- 175

Socioeconomic analysis
- 283, 284

Sperm
- 27

Spraying
- 159, 160

Stand
- 43, 157, 162, 168
- composition, 43, 72
- disturbance, 74, 79, 81, 83
- structure, 79

Stand risk index
- 203

Beetle pressure
- 202
Stand susceptibility index, 198, 205
 age factor, 199
 density factor, 200
diameter, 205
elevation, 207
latitude, 207
location factor, 200
longitude, 207
percentage of susceptible pine basal area, 205
stand composition, 206
stand density, 207
Stridulation, 8
Survey, 76
 aerial, 12, 167
 remote sensing, 167
Survival, 28
Susceptibility, 197, 198
 landscape, 43, 48, 51, 80
 stand, 43, 79, 83, 117, 119, 168
tree, 117, 119
Susceptibility and risk rating, 121
Susceptibility and risk rating system, 284, 289
Sustainable forest management, 281, 286, 288
Symptoms of attack, 10, 12
Taxonomy, 6
Tear strength, 271
Tensile strength, 270
Thermomechanical, 258, 270
Thinning, 38
Trans-verbenaol, 17
Traversability, 81
Treatment
 felled trees, 158
 single trees, 158
 stands, 157, 158
Tree mortality, 5, 39, 42, 43, 119, 167
Welfare effects of forest protection, 289
Yield, 256, 263, 268
The mountain pine beetle is the most damaging biotic disturbance agent in mature lodgepole pine in western Canada. The current beetle outbreak in British Columbia is unprecedented in scale and will have unavoidable ecological and economic impacts. Unfortunately, this beetle outbreak may be a harbinger to an increased pest threat to Canadian forests. The abundance of mature age class timber in the inventory and a trend to warmer, drier summers and infrequent cold winter weather can combine to alter the balance between pest and host in forest ecosystems.

Major economic and non-market values accrue from forests. Sustainability of these forest values will be challenged by an increase in forest pest disturbances. The extensive character of Canadian forestry does not remove the risks of pest outbreaks. Maintaining forest resource values will benefit from a renewed commitment to reducing the impacts of forest pest disturbances. The key elements of this commitment are forest health monitoring, identification of high threat stands and pathways, prompt direct control activity, and landscape level reduction of stand susceptibility through preventive forestry practices. Forests are too valuable to not effectively respond to pest disturbances.