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Abstract
Forest management decisions regarding the mountain pine beetle (Dendroctonus ponderosae Hopk.) are 
generally driven by the location, size, and impact of the beetle population. Information on infestations is 
collected using a variety of survey techniques, with the methodology and scale (level of detail) of the survey 
being defined by the management objectives. Questions regarding tree or stand level characterization of 
beetle impacts require different support data than are required at the landscape level. In this report, we pres-
ent a summary of the different survey approaches for characterizing mountain pine beetle infestations (with 
emphasis on red attack stage), across a range of scales. The concept of an information hierarchy is also 
presented, whereby multiple sets of survey data may be nested for any given area of interest. For example, 
a lower cost overview survey may be used to guide the selection of locations requiring more intensive (and 
more expensive) surveys. The objective of this report is to review the tools and approaches available to for-
est managers for the detection, mapping, and monitoring of mountain pine beetle. The information content 
and limitations associated with each survey method are provided, in order to facilitate informed choices of 
survey methods and data sources. Survey recommendations, based upon the information hierarchy, are also 
included.

Résumé
Dans le domaine de la gestion forestière, les décisions concernant le Dendroctone du pin (Dendroctonus 
ponderosae Hopk.) sont généralement motivées par l’emplacement, la taille et l’impact de la population 
des scolytes. Les informations concernant l’infestation sont recueillies à l’aide de différentes techniques 
de relevé, la méthodologie et l’échelle (niveau de détail) des relevés étant décidés en fonction des objectifs 
de gestion. Les questions concernant la caractérisation des impacts des scolytes au niveau des arbres ou 
des boisés nécessitent des données de base différentes de celles concernant le paysage. Dans le présent 
rapport, nous présentons un résumé des différentes approches de relevé utilisées pour la caractérisation des 
infestations par les dendroctones du pin (en mettant l’accent sur la phase dite « rouge » de l’attaque) sur 
différentes échelles. Le concept de hiérarchie de l’information est également présenté, celui-ci consistant 
à insérer plusieurs groupes de données les uns dans les autres pour n’importe quel secteur intéressant. Par 
exemple, un relevé d’ensemble à coût modique peut être utilisé pour guider la sélection des emplacements 
nécessitant des relevés plus intensifs (et plus chers). L’objectif de ce rapport et d’examiner les outils et les 
approches dont disposent les gestionnaires forestiers pour la détection, la cartographie et la surveillance des 
dendroctones du pin. Les informations fournies par chaque méthode de relevé ainsi que les limitations qui 
leur sont associées sont exposées afin de faciliter le choix des méthodes de relevé et des sources de don-
nées. Des recommandations concernant les relevés, basées sur la hiérarchie d’information, sont également 
incluses.
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Introduction
Forest management decisions regarding the mountain pine beetle (Dendroctonus ponderosae Hopk.) are 
generally driven by the location, size, and impact of the beetle population. For example, small groups of 
infested timber may be deemed to have sufficiently small impact that no action is taken. However, if moni-
toring indicates that the population is increasing, action may be taken to prevent or reduce future losses. 
Without control action, infestations within susceptible forests can expand until large numbers of trees are 
killed (Safranyik et al. 1974). Generally, the most severe infestations occur in mature stands of lodgepole 
pine (Pinus contorta), but other pines, such as ponderosa (Pinus ponderosa), and white (Pinus monticola) 
are also attacked.

In general, mountain pine beetles in British Columbia reproduce at a rate of one generation per year 
(Safranyik et al. 1974). Adults attack trees in August, and lay eggs that develop into mature adults approxi-
mately one year later. The beetles must attack in large numbers to overcome the defences of a healthy tree 
and this is referred to as mass-attack. Once killed, but still with green foliage, the host tree is in the green 
attack stage. The foliage of the host tree changes gradually. Twelve-months after being attacked, over 90% 
of the killed trees will have red needles (red attack). Three years after being attacked, most trees will have 
lost all needles (grey attack) (B.C. Ministry of Forests 1995).

Information regarding the location, size, and impact of mountain pine beetle populations is collected 
using a variety of survey techniques. The survey approach is based upon the desired information required 
for a particular aspect of forest management. The survey may be done on a tree-by-tree basis on the ground, 
from an airborne platform, or using satellite sensors. As a result, the extent of the survey may range from 
a few hectares to millions of hectares. Each method has limitations, with the resulting data collected being 
applicable for differing management situations. The terms green, red, and grey attack stages indicate the 
visual appearance of the foliage on a tree infested by mountain pine beetle (Safranyik et al. 1974).

The methodology and scale of a survey is defined by the management question to be addressed. Ques-
tions regarding tree or stand level characterization of beetle impacts require different support data than 
required at the landscape level. Mountain pine beetle infestations are detected through systematic surveys 
conducted at regular time intervals. Detection is defined as identifying and documenting locations of previ-
ously affected trees and probable locations of currently attacked trees. Detection may be used to position 
field crews for infestation assessments or to facilitate a mitigation option (Safranyik et al. 1974). Mapping 
is defined as spatially explicit estimates of the number of trees affected, or of volume affected for a manage-
ment unit (e.g., at the stand level; forest inventory polygon). Surveys must locate the infestations as quickly 
as possible in order to reduce the number of beetles (Safranyik et al. 1974). Under all population conditions, 
monitoring enables forest managers to anticipate the possible risks associated with the infestation. Monitor-
ing is defined as repeatable, comparable estimation of beetle populations and impacts over time, in order to 
detect trends in population dynamics and spatial pattern.

Federal, provincial, and state governments are primarily interested in broad-scale detection of red at-
tacked trees across their entire political jurisdiction. Aerial overview survey operations are used to satisfy 
this information need (Wiart 2003). This information is used to monitor and report on overall forest health 
(e.g., USDA Forest Service 2003). Government agencies concerned with forestry or environmental protec-
tion also use the red attack detection information for strategic planning (e.g., B.C. Ministry of Forests 2001). 
This planning includes identifying areas for more intensive information gathering, mitigation resources, 
timber sales, and targeted protection. The location of red attack trees provides clues to the location of green 
attack trees, facilitating mitigation activities.  
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Forestry companies and government agencies work together during timber supply reviews and in 
planning land and resource management. Sub-provincial or county level monitoring, typically from aerial 
sketch mapping, is used to alter volumes and areas that are in turn used to adjust the annual allowable cut 
and refine timber supply forecasts (B.C. Ministry of Forests 2003). The maps of forest damage may also be 
used to adjust land use plans and to provide information of ecological interest.

Forest licensees and private landholders require detection of red attacked trees at a larger scale, with 
more detailed information regarding attack locations and intensities across their land base (Wiart 2003). 
These general locations are then used to further target more detailed detection and mapping efforts. Results 
from local area mapping of red attack are used to guide surveys for associated green attack trees, and to aid 
in the design of logging and sanitation plans.

Each of these aforementioned information needs requires a different survey technique to provide the 
appropriate level of detail. Survey techniques also vary by the timing of the survey relative to the expression 
of the attack in the foliage of the tree crown. In general, green attack is not operationally detectable without 
having either actual physical contact with the trees in question or close range examination. Red attack is 
operationally detectable over the range of survey techniques (field, airborne, and satellite). While currently 
less reliable than red attack survey, grey attack may also be detected with a range of survey techniques. The 
red attack stage is the focus of the detection methods presented in this report. 

Historically, mortality of lodgepole pine has been recorded anecdotally in the accounts of early explor-
ers of British Columbia, through to the systematic surveys that occur today. The native range of moun-
tain pine beetle includes southern and central British Columbia where pine species grow (Amman, 1978). 
Populations of mountain pine beetle are also historically present in southwestern Alberta. Insect-induced 
mortality of mature pine in British Columbia is largely a result of attack by mountain pine beetle. For 
example, surveys conducted by the Canadian Forest Service, Forest Insect and Disease Survey (FIDS), 
estimated annual losses averaging 7.8 million mature pine trees over 34 years (ending in 1995), peaking in 
1983 at 80.4 million (Wood and Unger 1996). The extent of the current infestation in British Columbia is 
increasing annually, with areas reported at near 2 million ha in 2002 (Westfall 2003) and estimated at over 
4 million ha in 2003 (B.C. Ministry of Forests 2003). In Figure 1 the annual impact of mountain pine beetle 
is contrasted with comparable areas disturbed by forest fire.



Figure 1. British Columbia statistics on annual area burned by forest fires or killed by mountain pine beetle  
(Canadian Council of Forest Ministers 2003).

The impact of mountain pine beetle is evident throughout its range, being the second highest contributor 
to tree mortality within the national forests of Colorado, South Dakota and Wyoming. Over 300 000 trees 
were killed during 1997, 1998, and 1999 within the Rocky Mountain region of the United States (Harris et 
al. 2001). The number of trees killed has increased every year from 1996 to 2001, with over 800 000 trees 
killed over a 142 410 ha (converted from a reported 300 000 acres) area (Johnson 2002). 

Insect disturbances are systematically monitored on an annual basis to assess extent and impact upon 
forest resources. As a component of insect monitoring surveys, mountain pine beetle impacts are observed 
and recorded. Detection and mapping of mountain pine beetle, as a component of insect monitoring sur-
veys, provide a record of tree mortality and therefore, the impact of the pest. These recordings are carried 
out using a range of techniques, each with its own advantages and disadvantages. Ground-based surveys are 
the most reliable source of information regarding the agent responsible for forest damage. Field surveys are 
undertaken judiciously due to high costs on a per hectare basis. Aerial surveys have the advantage of lower 
costs per hectare, and fairly reliable recognition of the damage agent. However, the points and polygons 
noted by the aerial surveyors tend to have issues related to positional accuracy and attack magnitude. Both 
the ground and aerial surveys produce data that must be digitized for further analysis or for integration with 
forest inventory data or decision support systems. Alternatively, digital remote sensing produces data that 
can be quickly integrated with forest inventory databases or models. Some digital remote sensing instru-
ments can also offer high positional accuracy (Dial et al. 2003; Tao et al. 2004). However, depending on the 
sensor and type of processing used, the costs per hectare can be low or high. The choice of detection method 
must therefore be considered in the context of the value of the information to the forest manager.

3
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Figure 2. Foliage changes following mass-attack at 12 sites in the Kamloops Forest District, between 1962 and 
1967. The foliage conditions of 134 individuals from three species were monitored. Illustrated is the 
number of months for a sample of mass-attacked trees to reach 100% of a given attack stage; variability is 
demonstrated between stands (1 standard deviation error bars) and between species. 

When considering the differing approaches to detection, whether analogue or digital, it must be recalled 
that the fading of foliage in response to mountain pine beetle attack is not uniform among all individual at-
tacked trees. In Figure 2 we present the rate at which sampled trees faded in response to attack by mountain 
pine beetle. During the base year, all trees were at green attack stage. Inspecting the same trees during 
the summer following the initial attack, some still appeared to be in the green attack stage, while other 
individuals had faded to red attack. Similarly, red attack and grey attack co-occurred during the second and 
third summers following attack. The general trend in fade rates is captured in Figure 3, where the fading of 
15 lodgepole pine trees is indicated with the overlap between the expressions of attack stages in the crown 
foliage. Trends to note include no trees appearing as green stage after 12 months, all trees reaching red stage 
by 12 months, and grey stage initially evident after 13 months. The overlap of the red and grey stages sub-
sequent to a successful mountain pine beetle attack is also evident. While this is a limited sample, additional 
samples support the same trends (refer to Figure 2 error bars for an indication of the range of variability 
by attack stage). The variability in the rate of change is greater over larger areas, as more variability in tree 
characteristics and environments occurs. In general, red attack surveys should occur from mid-July to mid-
September for most of British Columbia. Exact dates depend on local conditions. The implication to any 
non-field based survey technique, even if it is highly accurate, is that it may not detect all attacked trees as 
the attack may not yet be evident in the foliage.
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Figure 3.  Variability in foliage fade rate within a sample lodgepole pine stand (Fountain Valley Site 2, Kamloops 
Forest District, between 1962 and 1967) post mass-attack. This example stand was composed of 15 
attacked trees. 

In this report, we present a summary of the different survey approaches for characterizing mountain 
pine beetle across a range of scales. The scale, or detail of the survey, is linked to the type of forest manage-
ment that the data are intended to support.  (after Shore 1985; B.C. Ministry of Forests 1995 and 2000):

1. Aerial survey – captures infestation extent and intensity;

2. Ground survey – on a sample basis to confirm insect species, evaluate timber killed or currently 
under attack (green attack), and to collect mensurational data; 

3. Infestation trend assessment – to determine infestation trend and to support damaged forests 
(through brood assessment or counting the number of infested trees). 

The objective of this report is to review the tools and approaches available to forest managers for the 
detection, mapping, and monitoring of mountain pine beetle. Survey recommendations, based upon the 
above survey hierarchy, are also included. 

Aerial Survey
Aerial surveys allow for the detection of red trees by observers in fixed wing or rotary aircraft. Consider-
ation of the viewing conditions and the pests must be included when planning an aerial survey. Of primary 
importance when undertaking an aerial survey are good visibility and a minimum cloud ceiling of about 
1000 m. Clear and sunny days are preferred, but consistent high overcast sky, providing even illumination, 
is also acceptable. Broken cloud conditions or low sun angles are not recommended, as clusters of infested 
trees can be missed in the resulting shadows. The timing of the surveys generally coincide with the insects’ 
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specific survey bio-window. The bio-window is the optimum time for visual expression of major forest 
pests and related damage (B.C. Ministry of Forests 2000).

The topographic maps used during aerial surveys can be enhanced by aerial photographs, especially 
in areas of extensive pest damage on even terrain with few geographical features. Up-to-date aerial photos 
can be useful in showing logging, burns, and other details that observers can delineate from infested timber. 
If available, custom drawn GIS maps that highlight cut blocks, roads, water bodies and other landmarks, 
greatly improve the observer’s ability to orient themselves quickly and thus enhance the accuracy of pest 
polygon placement.

The notes made by the observers during an aerial survey vary depending on the agency; however all 
surveys will note the location and identification of the pest and estimate the intensity of attack. The maps 
from multiple observers are combined and the infestations are digitized. Correct identification of tree spe-
cies, insect pest and attack category are difficult from the air, and this survey method is only effective when 
combined with current information gathered in the area from ground surveys previous to and following the 
sketch mapping. Observer knowledge of the local forest and pests is also important for the mapping to be 
accurate. 

The aerial survey maps must be supplemented with ground survey assessments to estimate the extent 
of the beetle population and the impact. The exact number of affected trees or area cannot be efficiently 
assessed using aerial surveys (Harris and Dawson 1979). This limitation results in survey maps where the 
estimate of intensity is noted as a class, rather than an exact value. Furthermore, location errors due to 
off-nadir viewing may make some surveys unreliable for dispatching ground crews (Aldrich et al. 1958). 
For a given area, assessment of aerial survey accuracy and presence of bias are best determined using a 
multistage sampling procedure, where aerial sketch mapping, global positioning system (GPS) point data, 
aerial photography, and ground plot data are all collected and compared, enabling cross-validation.

Sketch mapping
The most general approach to detection is to sketch map the red trees that are visible from a fixed wing 
aircraft. Notations are made on topographic maps at scales from 1:100 000 to 1:250 000 over millions of 
hectares, although provincial agencies in British Columbia occasionally use 1:50 000 scale base maps. 
(While potentially providing greater spatial precision, too large a map scale results in logistical problems in 
the aircraft, as too many maps are required to characterize the large areas typically mapped.) Sketch maps 
provide quick, quality information for strategic planning during epidemics (Heller et al. 1955; Aldrich et 
al. 1958; Waters et al. 1958). Consistency between observers can be verified with a small number of check 
flights that repeat the sampling of an area. If the mapping has been consistent, cumulative mortality in 
specific stands can be estimated by overlaying successive years of damage (with interpretation including 
consideration of the photo acquisition dates and variability in fade rates). Care must be taken to ensure 
that the above-mentioned scales are considered when undertaking additional analyses, especially if the 
analyses are spatial in nature. The sketch map data is collected to represent large areas, often at the regional 
or provincial level. As a result, the disturbance characteristics over the large area are well characterized, 
but issues related to the accuracy of the polygon boundaries may emerge when attempting to integrate with 
spatial datasets representing smaller areas. 

Sketch mapping of disturbances has a long history in North America. Archival data exists over much of 
British Columbia and the Pacific Northwest1 to aid in the understanding of disturbance activity over time. 
Much of the former Forest and Insect Disease Survey (FIDS) pest data collected for B.C. and the Yukon 
are available. For instance, there are over 2100 different maps depicting mountain pine beetle infestations 
from 1959-1995. There are other sketch maps of infestations, scanned in from archival reports dating back 

1  For archival information on mountain pine beetle in British Columbia, see www.pfc.cfs.nrcan.gc.ca/entomology/mpb/
historical/index_e.html
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to 1928, that have been added to the historical collection on mountain pine beetle. Due to the nature of the 
data collection and digital conversion, the positional accuracy is variable and must be considered by users. 
An additional issue to consider regarding the archival data is the spatial extent of the survey. For instance, 
absence of infestation noted at a particular location or time may be due to the lack of a spatially exhaustive 
survey. Flight line information to accompany the sketch map survey results would ameliorate this issue. 

A cost effective approach to improve the spatial accuracy and attack magnitude estimates of sketch 
mapped polygons is the use of Landsat imagery as an underlay for the sketch mapping. The sketch base 
map could contain the same information currently portrayed on the 1:100 000 scale map sheets (e.g., roads, 
urban areas, lakes, etc.), with the added benefit of a continuous view of the landscape from the image data, 
as a backdrop. Polygon placement will be aided from the additional context information conferred by the 
imagery. Magnitude labelling can also be reassessed post aerial survey, as the actual disturbance outlined 
may be evident in the imagery (depending on the date of image acquisition). 

Global positioning systems
Once sketch maps have been obtained, infested landscapes undergo more detailed aerial surveys conducted 
from a helicopter. Red trees are visually detected, their locations are recorded with a GPS, and noted on 
topographic maps of 1:20 000 to 1:50 000 scale. The helicopter pilot hovers above the centre of a group of 
attacked trees, and another person will capture the GPS waypoint for the site. An estimate of the number 
of infested trees at that location and the type of insect is also noted. The purpose of the GPS survey is to 
accurately locate the beetle impacts to aid in rendering local or regional strategic decisions.

Figure 4. Illustration of (a) concentrated attack, and (b) dispersed attack (after B.C. Ministry of Forests 2003).

The likelihood of observers logging a non-existent red attack location (an error of commission) is 
extremely low. However, not detecting red attack areas on the landscape (errors of omission) depends on 
the survey effort covering an area. As mentioned above, knowledge of the population size is also required 
support information for helicopter GPS surveys. The density of the affected trees at a given point is also an 
issue. For a given survey point the trees identified may be dispersed or clustered, yet this is not captured 
in the survey (Figure 4; B.C. Ministry of Forests 2003). The use of GPS carries the errors associated with 
that technology (Kaplan 1996) and additional positional errors that are a function of the viewing platform. 
Slight angles between the viewing location and the perceived centre of the infestation can lead to errors in 
the position of the centroid of the infestation (Figure 5). 

Healthy tree Attacked tree
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Figure 5. Illustration of how flying height and view angle can affect positional accuracy of the aerial surveyed  
GPS points.

Air photo interpretation
Aerial photography is the most common imagery used in a forest inventory to characterize forests and meet 
management objectives. Surveys that utilize aerial photography can be grouped into classes based upon the 
type of information collected (after Wear et al. 1966): 

• Damage detection;

• Damage location; 

• Damage Amount; and 

• Estimation of the relative size of the insect population and the capacity for future damage. 

Aerial photography is not as well suited to initial damage detection as visual aerial survey methods 
(such as sketch mapping); information regarding insect populations and potential for causing future dam-
age is best collected through field survey. However, aerial photography can address the information need 
for generating mortality estimates and precise locating of infested areas. Either normal colour or colour-
infrared photos can be visually interpreted for signs of mountain pine beetle red attack (Murtha 1972). 
The photos are collected at scales ranging from 1:1 000 to 1:65 000. At 1:8 000 individual trees can be 
identified; whereas, at 1:19 000 only the proportion of forest damage can be estimated (Gimbarzevsky et 
al. 1992). However, the extent of the area captured in the photograph is much smaller at a scale of 1:8 000. 
Furthermore, the results may be affected by the experience of the interpreters (Klein 1973). Additionally, 
ground surveys can define confidence limits around mortality estimates (Aldrich and Drooz 1967; Harris et 
al. 1982). For instance, Sharpnack and Wong (1982) present an approach where photos are used to calibrate 
damage estimates made from attack areas depicted on sketch maps. Photos may also be used in a more 
independent fashion to sample an area to estimate mortality rates (Hamilton 1981).
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As mentioned, air photos may be used to generate estimates of damage (or mortality) and to locate the 
infested trees for salvage or to aid in mitigation activities. Air photos may be combined with samples of 
field data to reduce field costs while still generating robust estimates of infestation location and magnitude 
(Sharpnack and Wong 1982). A procedure for combining the two data-types is double sampling with re-
gression (Wear et al. 1966). The method is based upon the premise that field measurements of damage or 
mortality are related to what can be interpreted from photos. Where field data is sampled and extrapolated 
with a regression-based approach using photo measurements, cost savings can be realized when appropriate 
conditions are met. If the photo plots are not substantially cheaper than the collection of field data, such an 
approach may not be warranted. The general approach, when using double sampling with regression for 
characterizing damage or mortality, is to sample field conditions within a predefined population area. Pro-
cedures for combining the field and photo-based estimates is provided in Wear et al. (1966). To compute the 
area damaged using this regression-based approach, measurements must be made both on the ground and 
from photographs. The nature of the field sample (i.e., number and distribution of plots) and the definition 
of the population area (i.e. size and shape) must also be correctly specified for robust estimates of damage 
to be generated. Meeting all statistical and operational requirements enables the final calculation of an 
estimate for the total amount of mountain pine beetle damage. The integration of field and photo data in a 
sampling and regression framework to make estimates of damage over large areas is analogous to the use 
of field data to calibrate damage estimates made from remotely sensed data. 

Ground Survey
Ground surveys assess the population size, or the degree of forest infestation, within a local area. Sample 
plots are generally less than 1 ha. Population estimates indicate whether a local beetle population is increas-
ing, static, or decreasing. Infestation estimates indicate the impact of a particular beetle population. Both 
types of techniques are used to drive the selection of the most appropriate management response.

Population assessments may be based upon field surveys or aerial surveys. Field surveys enable a brood 
assessment to be undertaken. Brood assessments are carried out in the late summer to fall and in the spring.  
Beginning in mid-July, population surveys with sketch mapping may be undertaken. These aerial surveys 
influence the placement of subsequent ground surveys. Aerial survey data collected over consecutive years 
may also be compared to indicate population trends. 

Brood assessment ground surveys may be done in September to October based upon a timber cruising 
technique. The timber cruising operation records information including tree species, diameter at breast 
height, pest status (healthy, currently attacked, or partially attacked, pitch outs, and foliage colour) (Shore 
1985; B.C. Ministry of Forests 1995). In the spring following attack, assessment surveys account for 
over- wintering brood mortality and losses to natural enemies [(i.e., parasites and predators, particularly 
woodpeckers (B.C. Ministry of Forests 1995)]. A fixed size bark area (typically 900 cm2) is removed and 
examined to form a statistically valid sample of trees to determine the stand average trend ratio (Equation 1) 
and the percent over-wintering mortality (Equation 2) (Shore 1985). 
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The average trend ratio (r) for each stand is determined as follows:

  (1)

Where, 

y = number eggs and larvae

o = number pupae and adults

g = number of galleries

t = number of sampled trees

Percent of over-wintering mortality may subsequently be computed for each stand as:

  (2)

The results are used to indicate population trend. For instance, average population trend ratios can be 
interpreted as follows: if the result of  r is less than 2.6, the population is decreasing. If r is from 2.6 to 4.0, 
the population is static. If r is greater than 4.0, the population is increasing. These values are heuristic in 
nature and should be used to support interpretation - not to act as sole source of information on the trends 
of a given population. Population trends may also be inferred from air photographs, with the area, or count, 
of red attacked trees compared in successive years. This relationship is useful as an indicator of the general 
population trend; however, this relationship should not supplant brood assessments.

Brood assessments are carried out in the months following the fading of foliage to red, indicative of 
trees attacked in the previous year (with survey beginning in approximately mid-July). The survey locates 
the green attacked trees containing the mountain pine beetle brood that will be the source of future infesta-
tions. Any survey system similar to prism or strip cruising will typically work. The surveys start near red 
trees and progress outward in a grid, or other systematic pattern, to locate the currently attacked trees. The 
crews must be well trained before they begin and their work must also be checked periodically; the extra 
time needed to properly train and check the crews is vital and cannot be neglected since the proper identifi-
cation of attack category (Table 1) is critical to the success of the ground survey effort.

Table 1. Glossary of mountain pine beetle attack categories:

Attack category Definition

Endemic Mountain pine beetles attack and kill stressed trees, often in concert with secondary 
bark beetle species.

Incipient Mountain pine beetle population within a stand is sufficiently large that healthy 
trees are killed. The killed trees usually occur in patches of various sizes and are 
generally confined within limited areas (e.g., stands).

Outbreak or Epidemic Mountain pine beetle population and tree mortality occur at the landscape level.
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Infestation assessment techniques range from simple identification of trees under attack to a complete 
mensuration of the infestation. Walkthroughs are used largely as an initial ground reconnaissance survey 
for determining the characteristics of attacked stands and to contribute toward determining information 
needs for more intensive surveys. Probes are systematic strip surveys that collect more detailed information 
than the walkthrough survey. Probe information is compiled on a polygon basis and includes attributes such 
as: location on map; size of beetles under bark; relative brood success; percentage of attack category; rate 
of spread; and stems per hectare (B.C. Ministry of Forests 1995). While useful, these survey techniques do 
not provide sufficient information for assessment of volume or area infested. Prism cruises, on the other 
hand, are used for detection and impact assessment, where the volume affected can be estimated on a stand 
basis. Line transects are also used for detection and impact assessment, and are more efficient than prism 
cruising (Safranyik and Linton 2002). With these data, affected volume and area can be estimated from 
the survey, and can potentially be statistically extrapolated to represent larger areas. An additional means 
to characterize the population trend of a mountain pine beetle infestation is by calculating a green-to-red 
ratio. A green-to-red ratio is the estimated number of currently attacked trees compared to the number of 
red attacked trees. This ratio gives a rough indication of the population growth. 

Digital remote sensing
One advantage to using satellite images in mapping red attack stage trees is that they portray continu-
ous data across the landscape. In this way, all areas in the image are examined for possible red attack, 
independent of accessibility or position in a watershed. Another advantage of mapping from satellite im-
agery is the reduction or elimination of interpreter bias afforded by automated classification algorithms. 
By avoiding visual interpretation, the products have greater consistency and reliability between different 
areas or dates. Increased reliability also results from the high positional accuracy of image data compared 
to aerial survey data. The standard pre-processing of satellite images results in data that can be confidently 
integrated with forest inventory polygons and other spatial data sets (e.g., elevation data, road access). The 
results of analysis of remotely sensed data are typically subjected to accuracy assessment protocols. This 
is a unique element of remote sensing analyses in contrast to the more heuristic assessments of the aerial 
survey products. The accuracy of an attribute, such as red attack, may be characterized in relation to an 
independent validation dataset. The use of an independent validation dataset allows for the characterization 
accuracy in terms of correct identification and the distribution of the error. Infested areas that are missed 
and, conversely, locations that are falsely indicated, may also be characterized (for theory see Congalton 
1991; for an example see Franklin et al. 2003b). 

Considerations for planning to map mountain pine beetle red attack using digital imagery include the 
spatial, temporal, spectral, and radiometric resolution of the imagery. Spatial resolution, or pixel size, 
ranges from less than a metre to greater than one kilometre for different sensors. Similar to airborne image 
collection, there is a trade-off between improving spatial resolution and both reducing image extent and 
increasing costs (Franklin et al. 2002). An understanding of the link between sensor acquisition characteris-
tics and subsequent image information content is critical to the success in a mapping exercise (Lefsky and 
Cohen 2003). For instance, the ability to discern differing objects on the landscape is linked to the spatial 
resolution (Franklin et al. 2003a). If a single pixel is composed of more than one element (i.e., part tree 
crown, part shadow, part ground vegetation), the pixel represents the collective spectral characteristics the 
elements present. The spectral signatures that are developed in such an instance have a suppressed variance 
that diminishes the power of predictive algorithms. In the case when a single pixel represents only one ele-
ment (i.e., a portion of a tree crown), the spectral signature is unique to that pixel (e.g., Wulder and Dymond 
2004). The sensitivity to spectral differences between red attacked and healthy trees (spectral resolution) 
also varies between different sensors. However, sensitivity to the condition of vegetation is a high priority 
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for developers of satellite sensors, resulting in many options. Temporal resolution, or image acquisition 
frequency, impacts the sensor’s ability to collect information regarding a particular attack stage. Airborne 
digital sensors can be tasked to capture image data on cloud-free days that correspond to the bio-window 
for red attack detection, where feasible or possible. Typically, satellite sensors have fixed revisit rates, such 
as the 16 days between the acquisition of Landsat scenes over the same area. The revisit cycle is based 
upon factors such as sensor elevation, orbit characteristics, and scene footprint. New high spatial resolution 
space-borne satellites, such as IKONOS and QuickBird, have directable sensor heads. The directable sensor 
head enables the capture of images for areas other than those located directly below the sensor. Imagery col-
lected off-nadir (not directly beneath the satellite) should be inspected and used with caution as the altered 
view angle impacts how the forest is characterized. 

The key to employing digital data for mapping mountain pine beetle impacts is to match the informa-
tion needs of managers with the image information content and resolution characteristics. For example, 
under endemic conditions, the information needs are for detection of single and small clusters of red attack 
trees. To produce this information, the imagery must have sufficiently high spatial and spectral resolution. 
In contrast, under epidemic conditions, the information needs are for quantifying the impact of large groups 
of red attack trees over large areas. Therefore, less expensive imagery with medium spatial resolution and 
moderate spectral resolution would be sufficient.

One advantage of digital imagery is that it may be geocorrected (two dimensions) or orthorectified 
(three dimensions); these corrections facilitate integration of the remotely sensed imagery with other spatial 
datasets, such as forest inventory polygons or GPS point data. These corrections also make it possible to 
compare images collected over multiple years, thereby providing an important monitoring tool. Additional 
strengths supporting the use of digital data are that objective, repeatable analysis of the data is carried out 
with equal effort across the landscape, and that digital techniques are applied in a systematic, consistent, 
and transparent manner. These features help reduce inconsistencies that can result from visual interpreta-
tion. The main impediments to the widespread use of digital data are often sophisticated processing needs, 
costs per hectare, and a mismatch between users needs and results generated. The use of aircraft results 
in similar considerations for airborne imagery collection as for aerial surveys. The optimum days for data 
collection have even light conditions, either clear of clouds or with high overcast clouds. The timing of the 
flights occurs when trees are in the red stage.

Airborne platforms
Digital images may be collected from airborne platforms over areas identified as infested during aerial 
surveys. The key differences between airborne images and aerial or ground surveys are that the spectral 
characteristics of the entire forest are captured and the data can be re-examined if uncertainties occur. 
Airborne imagery includes traditional air photos that are scanned into a digital format (Nelson et al. 2001), 
digital camera images, videography, multispectral scanners, and imaging spectrometers. Airborne images 
may be used to map the location of small clusters or scattered red trees. The results are used to direct ground 
surveys or to dispatch ground crews for sanitation treatment. The airborne digital imagery may be subjected 
to enhancements that highlight the locations of red attacked trees (Figure 6).

Digital camera technology is sophisticated enough for direct image capture. Most high-quality digital 
cameras are based on modified 35 mm or medium-format cameras. The spatial and spectral resolutions of 
these cameras match the quality of medium-speed film (Graham and Koh 2002). The digital format eliminates 
the developing and scanning necessary for film-based photographs to be analyzed in soft-copy format.
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Airborne scanners and imaging spectrometers collect digital images directly, similar to digital cameras. 
The spatial resolution (less than 1 m to greater than 10 m) and the sensitivity to different wavelengths of en-
ergy can be adjusted to address particular information needs. Red attack trees can be successfully detected, 
and the digital nature of the data provides for rapid integration with other digital datasets (Kneppeck and 
Ahern 1989; Ahern et al. 1986). Airborne scanners have not found wide operational implementation for 
mapping mountain pine beetle red attack largely due to high per-hectare costs.

Aerial videography provides some operational advantages over air photos including: lower cost, no 
delay for photographic development, option for including audio commentary, and high light sensitivity 
(Ciesla 2000). Additionally, camera settings can be adjusted during data collection in response to viewing 
the imagery as it is acquired. Similar to most airborne sensors, the disadvantages are primarily image extent 
and resolution characteristics. Otherwise, similar planning and processing options are available as they are 
with the digital camera systems described above. 

Satellite platforms
Satellite images may be collected to map infested areas over a range of scales. Satellite imagery is similar 
to airborne imagery in that the data is continuous across the extent of the sampled area. In general, the 
comparatively high orbits of satellite systems result in more favourable viewing geometry when compared 
to those of airborne systems. Airborne systems often generate data that requires sophisticated processing 
to compensate for aircraft motion, view angles, and variable illumination conditions over the acquisition 
period. Satellite images are available over a range of spatial, spectral, and temporal scales. Therefore, they 
can be used to address a variety of strategic and tactical planning decisions. The large image extents of 
satellite imagery enable economies of scale (on a cost per hectare basis). 

Mapping of red attack trees under epidemic conditions has been documented using satellite imagery. 
Due to the large cluster sizes and landscape-scale extent associated with epidemic conditions, low cost 
imagery from Landsat Thematic Mapper (single date) has been used to successfully map mountain pine 

Figure 6. Red attack trees delineated on a 1: 30 000 air photo. Image provided courtesy of Kim Forest Management 
Ltd., Prince George, British Columbia, Canada.
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beetle infestations (Franklin et al. 2003b). Higher accuracy of red attack mapping resulted from the use of 
multi-temporal Landsat Thematic Mapper and Enhanced Thematic Mapper datasets (Skakun et al. 2003). 
High spatial resolution sensors, such as QuickBird and IKONOS, are currently undergoing operational 
trials. While the Landsat mapping efforts have produced products representative of stand to landscape level 
characteristics, the higher spatial resolution satellites capture characteristics at the tree, or sub-stand level. 
The product generated from these high spatial resolution satellite systems may allow for the mapping of red 
attack in support of layout and planning activities. 

Mapping methods

Green stage

Detecting green attack trees is a highly sought-after, yet elusive goal for remote sensing researchers. Wa-
ter-stress of mass-attacked trees has been detected at the leaf-scale and at the branch scale (Murtha 1985; 
Ahern 1988; Rock et al. 1988). However, other studies have found low levels of detection where the data 
integrated foliage, branches, and other background objects (Puritch 1981).

The key issue in mapping green attack is the subtle change in the spectral signal. In order to detect this 
change, the number of objects within a pixel must be minimized and the relative differences maximized; this 
requires a sensor with high spatial and spectral resolution (such as the Compact Airborne Spectrographic 
Imager). To objectively classify such data, training data must be precisely located and representative of the 
attack stage of interest. The spatial resolution must be sufficiently high that individual pixels represent only 
the sunlit foliage of a tree crown. In turn, the spectral resolution of the sensor must also be fine enough, 
with sensitive enough optics, to enable a unique spectral signature to emerge that represents the green 
attack stage. A survey intended to capture the green attack stage of mountain pine beetle attack must be 
timed accordingly; the field calibration, data acquisition and processing, product development, and delivery 
must all occur within a time period which enables the forest manager to act upon the information gener-
ated. Environmental aspects such as cloud cover, drought stress, or snow accumulations, will also hamper 
the identification of trees under mountain pine beetle attack. The rate at which the foliage of a tree crown 
exhibits a mountain pine beetle attack is also variable (across all stages, not only green stage). The earlier 
the detection of attack is attempted, the higher the omission rate of actual attacked trees is likely to be. The 
fading of the foliage in the crown of a tree infested with mountain pine beetle is not a consistent, linear pro-
cess (Figure 2). Additional insights on the variability in fade rates and associated detection possibilities can 
be found in Roberts et al. (2003). Problems with any of the above elements will impact the ability to detect 
or map green attack using remote sensing instruments. The accuracy for green attack detection must be high 
for it to be useful in a management context. The costs must also be lower than established field techniques 
that are based upon associating surveyed red attacked trees with the presence of green attack.

An alternative to high spectral resolution data for maximizing the difference in spectral signal is to 
compare the same trees before and after attack. This image need translates into multi-temporal sets of high-
resolution data. Because high-resolution imagery tends to cover small areas, these data are often collected 
only in areas of known infestations. This approach may not be feasible in an operational setting unless 
high-resolution imagery was already being collected in endemic and insipient areas for other purposes. 

Red stage

Detecting and mapping red attack trees has been successful at various scales and with a variety of digital sen-
sors. However, the research has been largely targeted towards a specific set of conditions, and accuracy as-
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sessment protocols have been inconsistent. Therefore, the ability to map red attack with different tools under 
different conditions and attack intensity, requires additional research prior to being considered operational.

A key issue in mapping red attacked trees is the size of the clusters of red trees. The spectral difference 
between red attack and healthy trees is detectable under some conditions with some spectral mixing of pix-
els (Franklin et al. 2003b). If the cluster of red attacked trees is large with the attacked trees concentrated, 
the ability for the red attack to be mapped accurately is improved. The larger the cluster, the lower the 
spatial and spectral resolution required of the sensor. This relationship translates into low per-hectare costs 
for mapping epidemic conditions. 

The highest accuracy in digitally mapping red attack has resulted from multi-temporal data. For the 
most accurate results, multi-temporal sets of images should be taken from the same sensor view angle and 
under similar illumination conditions. Otherwise, differences between two images may be an artefact of the 
data collection process, and can obscure more subtle changes in the landscape. For the same reason, similar 
radiometric and other corrections must be applied to each image (Peddle et al. 2003). Common practice is 
to geometrically correct a master image, then register all subsequent images to it, with an error of less than 
one pixel (also known as rubber-sheeting). This approach optimizes the likelihood that detected changes 
reliably indicate the situation on the ground. 

Assigning agents to areas of detected change within a landscape can be the most difficult aspect of the 
remote sensing project. Foliage fading (to appear red or yellow) can occur for a range of reasons, including 
mountain pine beetle, other pests and diseases, drought, or senescence. Additional data can help at this 
point; a digital elevation model and an inventory of forest species can eliminate forests not susceptible to 
mountain pine beetle (Shore and Safranyik 1992). Furthermore, ground-validation or forest inventory data 
can help eliminate other agents.

Spatial processing of the image or ancillary data can aid in improving the accuracy of mapping of the red 
attack stage. One approach is to stratify the area into susceptible and non-susceptible stands or trees, based 
on entomological pest-host models (Shore and Safranyik 1992). This enhances the spectral differences 
between non-attacked and red attack areas. Damage caused by the mountain pine beetle was not confound-
ed by uncontrolled natural stand variability and the relatively small spectral influence of a few damaged 
crowns within a small area (Franklin et al. 2003). The second key element of satellite image processing is 
to incorporate the temporal aspect of the change. This means using multi-date or multi-temporal imagery 
where the detection of change is based on the differences in the forest from year to year. An example of 
this analysis approach for mapping red attack incorporates multi-temporal data with a transformation of the 
spectral data in calculating the Enhanced Wetness Difference Index (EWDI) (Skakun et al. 2003).

Grey stage

Detection and mapping of grey attack trees has been as accurate as red attack mapping when it is included in 
the study design (Klein 1973; Harris et al. 1982; Gimbarzevsky et al. 1992). However, these studies tested 
only air photo interpretation. Extensive research indicates that techniques developed for assessing forest 
impacts similar to grey attack, which are caused by defoliators, may be used fir assessing the magnitude 
of the impact of mountain pine beetle infestation. The primary issue for mapping grey attack is the time 
between the attack and the data collection. If the killed trees are not harvested, they may not be mapped 
due to falling, the development of neighbouring crowns of healthy trees, the development of understorey 
species, or vigorous growth of ground cover. Intuitively, the use of data from a single date may be adequate 
for grey attack mapping because the difference between healthy and defoliated trees is relatively large. Yet, 
in practice, the range of spectral variability representing grey attack stage is large, often impeding robust al-
gorithm development. Employing multi-temporal imagery may be required to consistently map grey attack 
stage. Care must be taken to differentiate changes due to mountain pine beetle from other changes occurring 
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on the landscape in the intervening time. The mapping of red attack and the later inference of grey attack 
may be a more robust approach as the spectral signature of red attack is more unique (single date) and the 
multi-date spectral differences are also greater. When concerned with mapping, or accounting for areas that 
have been impacted by mountain pine beetle, access to salvage harvest records are required. 

Data Integration 
Forest inventory datasets are developed over a period of time, allowing for photo commissioning, collection, 
interpretation, digitization, etc. (Gillis and Leckie 1996). The capture of data for a forest inventory often 
happens on a 10-year cycle. Forest disturbance, such as that due to mountain pine beetle, can occur within 
an inventory cycle. A forest inventory database requires maintenance over time or the data can quickly 
become outdated. Polygon decomposition was developed as a tool to integrate different data layers, such as 
aerial survey data or satellite image classifications, with existing GIS data, in order to provide timely and 
accurate estimates of forest change (Wulder and Franklin 2001). Remotely sensed estimates of red attack 
are easily integrated with the forest inventory data (Figure 7). This integration with forest inventory data 
facilitates the polygon-specific accounting of areas impacted. However, the link between remotely sensed 
areas impacted to volume impacted requires additional investigation.

Detection and mapping of mountain pine beetle impacts can also be integrated into decision support 
systems. Various models exist to aid managers in the planning and treatment of forests with mountain pine 
beetle populations. One type of model assesses the infestation risk of different forest stands (Shore and 
Safranyik 1992; Chojnacky et al. 2000). Spatially explicit models, such as developed by Fall et al. (2002) 
may also be able to capitalize upon the input of remotely sensed estimates of infestation locations, to aid in 
providing baseline data for projections of the course of future outbreaks. These models require information 
on the current location of attacked trees to predict possible future risk. The attack maps generated through 
remote sensing can be used as input to these models. For example, the forest inventory and digital elevation 
data provide a rating of susceptibility for each stand (Shore and Safranyik 1992). Overlaying the point data 
from a detailed aerial survey provides intuitive information, but additional utility is found by integrating 
that data in the model to generate a relative risk index (Figure 8).
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Figure 8. Illustration of integration of global positioning data with the Shore and Safranyik Mountain Pine Beetle 
Risk Rating System.

Figure 7. Illustration of integrating mountain pine beetle maps into forest management information systems. 
Undisturbed forest management stands shaded by site index. Stands disturbed by mountain pine beetle 
shaded by area (number of hectares), in upper tile; or proportion (percent polygon area), depicted in lower 
tile. As indicated in the legend shared by both tiles, harvested stands are shaded grey.
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Management options and recommendations
Field based methods for the detection of mountain pine beetle are well established and routinely undertaken 
by forest managers. Mitigation and harvest planning decisions are made based upon these field surveys. 
These intensive field surveys benefit from the use of more spatially extensive survey techniques, operating 
in an information hierarchy, that enable stratification of the landscape. The landscape stratification can be 
used to focus field surveys in the areas most likely to be impacted by the mountain pine beetle. 

Provincial and state governments are primarily interested in detection of red attack trees within their 
political boundaries (Wiart 2003). This information is used for reporting and strategic planning. At this 
scale, aerial sketch mapping is the recommended approach. To provide additional information regarding 
attack intensity and location of red attack, mapping approaches based upon medium resolution satellite 
imagery may be utilized. Additionally, to determine attack date, in order to aid shelf life studies, a change 
detection framework may be used that incorporates the time series analysis of multiple images. Also of 
interest at the provincial or state level is using samples of high-spatial resolution satellite data or aerial 
photography to provide an accurate and independent estimation of red attack over a larger population area. 
These samples of red attack locations may be used to validate disturbance magnitude and area estimates 
on a management unit level (following an approach akin to the double sampling procedure previously 
described for air photos).

Forestry licensees and government agencies require detection and mapping of infestations (red attack 
and grey attack trees) across their land base. At this scale, aerial sketch maps may no longer be appropri-
ate. Medium to high-resolution satellite and airborne imagery are recommended for red attack mapping. 
Medium resolution is recommended under epidemic conditions. High-resolution is more appropriate for 
non-epidemic conditions. Aerial photographs, often collected to meet other management needs, are also 
an appropriate source of information for red attack mapping. Interpretation, either manual or digital, of at-
tacked areas is required, but the low cost of the data may compensate for interpretation needs. The integra-
tion of red attack locations into the forest inventory is useful, as new attributes such as area or proportion of 
a polygon expected to be at red attack stage, enables synergistic applications with the forest inventory data 
and models. For instance, other attributes in the forest inventory database may be used to vet the results of 
the red attack mapping. Layout, access, and operability are examples of elements that may be combined 
with the red attack information to aid forest managers. The result of the data integration of red attack map-
ping with forest inventory is a low cost approach to update and or audit forest inventory data within forest 
inventory measurement cycles.

Forestry licensees also require local area maps of red attack to determine locations of associated green 
attack trees through ground survey. At this scale, high spatial resolution imagery, either satellite or airborne, 
is recommended to map the red attacked trees accurately. The maps of red attacked trees are in turn used 
to guide the field surveys, and the field locating of green attack stage trees. Established field techniques are 
appropriate for in situ determination of mountain pine beetle attack.
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Conclusions
In any survey methodology intended to meet forest management needs induced by mountain pine beetle ac-
tivity, it is critically important to link the information need to the type of surveys undertaken. Survey data is 
inherently tied to a scale of information, with a related expectation of attribute and spatial accuracy. Higher 
order information needs may require acknowledgment of an information hierarchy where multiple sets of 
survey data are nested. For example, using lower cost general overview survey information as a guide to 
selecting locations for more intensive surveys enables cost efficiencies. An understanding of the informa-
tion content of a range of data sources, as presented in this report, results in an ability to judiciously select 
the most appropriate data source to populate the information hierarchy to meet ultimate aims of mountain 
pine beetle mitigation and management. Many new survey options are available, from both airborne and 
satellite platforms, including a wide array of sensor types. While many new survey options are available, 
their applicability must ultimately be considered in relation to the information needs and business drivers. 
The new technologies are populating the information hierarchy between provincial overview and field 
surveys with an exciting multitude of options. Research and application based upon these new information 
sources, and subsequent integration with support datasets such as forest inventory data, heralds a new era 
in the survey of mountain pine beetle impacts.
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