Appendix I: Inventory Attributes

The following lists of attributes are intended to illustrate the types of information and data to be considered during planning and inventory projects. These lists should not be applied as a standard or considered exhaustive. The precise types of information to be included in an inventory will depend on the watershed and on the judgment of the individuals carrying out the assessment.

Typical Road Inventory Attributes

- a unique identifier for the road segment or road system
- length of road segment or road system
- estimated or known year the road was built
- inferred or known construction method used to build road (e.g. bulldozer, backhoe, winter construction)
- degree of revegetation occurring on the road
- location if different from base maps
- any observed instability indicators
- any anticipated erosion problems (hazards)
- known existing access and deactivation levels
- planned access and deactivation levels
- interpreted slope stability hazard rating
- interpreted consequence rating if a slope stability event occurs
- interpreted risk rating from hazard and consequence
- estimated priority rating (based on risk rating) for deactivation assessment (WRP Stage II Assessments and Prescriptions), if any
- suggested potential treatment of road, if any (e.g., water management or pullback)
- type of field assessment and qualifications of personnel required, if any
- estimated time and cost required for detailed field assessments, if any
- a preliminary access strategy (for reactivation and following deactivation)

Typical Landslide Inventory Attributes

- unique identifier for each landslide
- GPS location
- type of landslide (e.g. 7 class system of Rollerson and Fannin, 1992, or Cruden and Varnes, 1997 or LRAP)
- area of landslide in hectares (estimated from photos or measured in field)
- point of origin of landslide (e.g. road fill, road cut, cutblock or unlogged area)
- point of initiation of the landslide on the landscape (e.g. upper slope, lower slope)
- interpreted surficial geology at site of initiation
- estimated runout location (e.g. termination of slide on slope or in gully)
- interpreted degree of revegetation (may be repeated for historical photos to assess change in cover over time)
- estimated availability of local seeds and brush to landslide from surrounding vegetation
- interpreted risk of further landslide activity
- interpreted current active processes, if any (i.e. dry ravelling, surface erosion, stream rilling)
- estimated potential risks to downslope resources
- estimated priority for detailed assessment (WRP Stage II Assessments and Prescriptions), if any
- suggested potential remedial treatments, if any
- estimated time and cost required for detailed field assessments, if any

Typical Gully Inventory Attributes
- a unique gully identifier
- the number of years since harvesting occurred
- the number of road crossings over the gully
- the estimated or measured length of the gully
- the estimated bankfull width of the floor of the gully
- the estimated water transport and debris flow transport potential
- identified sediment sources feeding into the gully
- identified receiving location for sediment transported by the gully
- interpreted degree of revegetation of the gully
- estimated potential risks to downslope resources
- estimated priority for detailed assessment (WRP Stage II Assessments and Prescriptions), if any
- suggested potential remedial treatments, if any
- estimated time and cost for detailed field assessments, if any

Typical Riparian Area Attributes
- unique identifier for each riparian area
- dimensions of riparian area (e.g. length, width and overall area)
- extent of logging along channel margins
- age and type of second growth
- objective for potential treatment of site, if any
- suggested strategy for treating site, if any
- estimated benefit to watershed or component level objectives from treatment of site (e.g. fish habitat, water quality and stream health)
- estimated risk to riparian management treatments from potential upslope landslide events, if any
- estimated priority for detailed assessment (WRP Stage II Assessments and Prescriptions), if any
- estimated time and cost for detailed field assessments, if any
Typical Stream Channel Attributes

- unique identifier for each stream reach
- length of the stream reach
- stream channel class according to the Forest Practices Code (i.e. S1 to S4)
- stream channel classification based on the Channel Assessment Procedure (CAP) or comparable classification (e.g. Rosgen, 1994)
- sediment sources actively feeding the stream reach
- objective for potential treatment of site, if any
- suggested in-stream rehabilitation strategy for treating site, if any
- estimated benefit to watershed or component level objectives from treatment of site (e.g. fish habitat, water quality and stream health), if any
- estimated risk to in-stream treatments from potential upslope landslide events, if any
- estimated priority for detailed assessment (WRP Stage II Assessments and Prescriptions), if any
- estimated time and cost required for detailed field assessments, if any
Appendix II: Example – Risk Assessment Matrices

The following example risk assessment matrices are only illustrative and should not be considered a procedural standard. Examples 1A and 1B were derived for use on coastal watersheds for use in office-based overview assessments and for identifying project priorities. Interior watersheds may involve criteria related to erosion of fine grained soils. Example 2 was developed to include a rating of restoration feasibility along with risk and consequence in the determination of project priority. Practitioners should develop specific criteria for each project area, sub-basin or road system in consultation with stakeholders.

Example 1A: Road Hazard and Consequence Classification Criteria for use in Office-based Overview Assessments

Criteria

Hazard

- Evidence of mass wasting along design segment;
- Approximately 50% or more of similar design segments show mass wasting; and,
- Steeply gullied terrain, slopes in excess of 60% unless on bedrock.

- Minor evidence of mass wasting along design segment;
- Approximately 25% or more of similar design segments show mass wasting;
- Steep terrain on bedrock with slopes in excess of 40%; and,
- Moderately steeply gullied terrain, slopes in excess of 40% unless on bedrock.

- No evidence of mass wasting;
- Slope generally less than 40%; and,
- Bedrock.

Consequence

- Sediment delivery from source area leads directly into fish stream; and,
- Life/safety—generally not addressed except for mainlines which have public traffic.

- Sediment delivery from source area leads directly into non-fish stream; and,
- Sediment delivery from source area leads indirectly to fish stream.

- Sediment delivery from source area leads onto slopes; and,
- Sediment delivery from source area has no connection to streams.

Example 1B: Risk Assessment Matrix

<table>
<thead>
<tr>
<th>Hazard/Consequence</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Very Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Moderate</td>
<td>High</td>
<td>Very High</td>
</tr>
</tbody>
</table>
Appendix III: Road Deactivation Typical Drawings

TYPICAL ROAD PROFILE TEMPLATE #1

GENERAL NOTES:

1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.
2. Typical cross-ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.
3. For cross-ditch and ford definitions and notes see drawing 05 "Typical Ford/Squash Culvert Details".
4. For armouring details of fords see drawing 04 "Typical Ford and Squash Culvert Details".
5. This drawing to be read in conjunction with drawing 05 "Typical Ford and Squash Culvert Details".

TYPICAL WATER CROSSING TEMPLATE NOTES:

A) Water crossing width = the greater of 2 times the design culvert # or the width of the active stream channel. Width is specified on road deactivation prescription plans.
B) Water crossing depth = depth of cut from existing road grade to water crossing invert at intersection of road and water crossing channel. Depth is specified on road deactivation prescription plans.
C) Estimated high water level = water crossing width x 0.15
D) Maximum template grade may vary as directed by licensee (ministry representative to conform to actual site conditions).
E) Wetted perimeter to be constructed below existing road grade.
F) Crest curves that form a transition between the shape of the water crossing and the existing road are to be constructed with a curve radius of 0.3m. In 4.0m horizontal distance as shown on template will accommodate all access levels. (See Table A)
G) Sag curves that form the bottom of the water crossing are to be constructed to accommodate the specified access level. (See Table A)

SCALE 1:200

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

TYPICAL ROAD PROFILE TEMPLATE FOR FORDS
TWO-WHEEL DRIVE ACCESS
TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING

DATE: JULY 14 1997
DRAWING NO: 012094-00-03-1

Appendix III: Road Deactivation Typical Drawings
NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

Typical Road Profile Template #2

General Notes:
1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.

2. Typical cross-ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.

3. For cross-ditch and ford definitions and notes see DWG. 05.

4. For armouring details of fords see DWG. 04. Typical ford/squash culvert details.

5. This drawing to be read in conjunction with DWG. 04 "Typical ford and squash culvert details". DWG. 05 "Typical water control methods".

Typical Water Crossing Template Notes:

A) Water crossing width = the greater of 2 times the design culvert # or the width of the active stream channel. Width is specified on road deactivation prescription plans.

B) Water crossing depth = depth of cut from existing road grade to water crossing invert at intersection of road and water crossing conduit. Depth is specified on road deactivation prescription plans.

C) Estimated high water level = water crossing width x 0.15. (For all templates except #4).

D) Maximum template grade may vary as directed by licence or ministry representative to conform to actual site conditions.

E) Wetted perimeter to be constructed below existing road grade.

F) Crest curves that form a transition between the shape of the water crossing and the existing road are to be constructed to accommodate the specified access level. The maximum crest curve height of 0.25m in 4.0m horizontal distance as shown on template will accommodate all access levels. (See Table B)

G) Sag curves that form the bottom of the water crossing are to be constructed to accommodate the specified access level. (See Table A)

Scale 1:200

Prepared by: SHC-LAHANIA for the Ministry of Forests, Kamloops Forest Region. 100-1070 West Georgia Street, Vancouver, BC, V6C 3H5. Fax: 604-864-7985

Province of British Columbia
Ministry of Forests
Kamloops Forest Region

Typical Road Profile Template
For Fords
Four-Wheel Drive Access
Typical Road Deactivation Prescriptions Drawing

Date: July 14, 1997

Drawing No.: 012094-00-03-2

Appendix III: Road Deactivation Typical Drawings
NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

GENERAL NOTES:

1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.
2. Typical cross drain templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.
3. For cross drain and ford definitions and notes see Dwg. 03.
4. For embankment details of fords see Dwg. 04. TYPICAL FORD/SQUAMISH CULVERT DETAILS.
5. This drawing to be read in conjunction with Dwg. 04. TYPICAL FORD AND SQUAMISH CULVERT DETAILS.
Dwg. 05. TYPICAL WATER CONTROL METHODS.

TYPICAL WATER CROSSING TEMPLATE NOTES

A) Water crossing width = the greater of 2 times the design culvert # or the width of the active stream channel.
B) Water crossing depth = depth of cut from existing road grade to water crossing invert at intersection of road and water crossing centerlines. Depth is specified on road deactivation prescription plans.
C) Estimated high water level = water crossing width x 0.15. (For all templates except #4)
D) Maximum template grade may vary as directed by Licenced Ministry representative to conform to actual site conditions.
E) Wetted perimeter to be constructed below existing road grade.
F) Crest curves that form a transition between the shape of the water crossing and the existing road are to be constructed to accommodate the specified access level. The maximum crest curve height of 0.25m in 4.0m horizontal distance as shown on template will accommodate all access levels. (See Table A)
G) Sag curves that form the bottom of the water crossing are to be constructed to accommodate the specified access level. (See Table A)

SCALE 1:200

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

TYPICAL ROAD PROFILE TEMPLATE
FOR FORDS
ALL-TERRAIN VEHICLE OR WALKING ACCESS
TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING

DATE: JULY 14 1997
DRAWING NO: 012094-00-03-3

Appendix III: Road Deactivation Typical Drawings
197
NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

TYPICAL ROAD PROFILE TEMPLATE #4
(RESTABLISH STREAM CROSSING)

GENERAL NOTES:
1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.
2. Typical cross ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.
3. For cross ditch and ford definitions and notes see dwg. 05.
4. For armoring details of fords see dwg. 04.
5. This drawing to be read in conjunction with dwg. 04 "Typical Ford and Squamish Culvert Details".
 dwg. 05 "Typical Water Control Methods".

TYPICAL WATER CROSSING TEMPLATE NOTES
A) Water crossing width = the greater of 2 times the design culvert # or the width of the active stream channel.
 Width is specified on road deactivation prescription plans.
B) Water crossing depth = depth of cut from existing road grade to water crossing invert at intersection of road and water crossing centerlines. Depth is specified on road deactivation prescription plans.
C) Estimated high water level = water crossing width X 0.15.
 (For all templates except #4)
D) Maximum template grade may vary as directed by licensee/Ministry representative to conform to actual site conditions.
E) Wetted perimeter to be constructed below existing road grade.
F) Crest curves that form a transition between the shape of the water crossing and the existing road are to be constructed to accommodate the specified access level. The maximum crest curve height of 0.55m in 4.0m horizontal distance as shown on template will accommodate all access levels. (see table A)
G) Sag curves that form the bottom of the water crossing are to be constructed to accommodate the specified access level. (see table A)

SCALE 1:200

DREW M.K.
CHECKED M.L.
APPROVED W.D. CRIPPS DATE JULY 14 1997

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

TYPICAL ROAD PROFILE TEMPLATE
FOR FORDS
NO ACCESS (CLOSED)

TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING
DATE JULY 14 1997
DRAWING NO. 012094-00-03
REVISION A

REVISIONS
APPROVED
DATE

198
Appendix III: Road Deactivation Typical Drawings
NOTE
These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

TYPICAL CROSS DITCH TEMPLATE #1

GENERAL NOTES:
1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.

2. Typical cross ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.

3. For cross ditch and ford definitions and notes see DMG. 05

4. For armouring details of fords, see DMG. 04 ‘Typical Ford/Squamish Culvert Details’.

5. This drawing to be read in conjunction with DMG. 04 ‘Typical Ford and Squamish Culvert Details’, DMG. 05 ‘Typical Water Control Methods’.

SCALE 1:200

TYPICAL CROSS DITCH TEMPLATE NOTES

H) Cross ditch templates are designed to carry a discharge equivalent to a 600mm culvert

I) Cross ditches are to be constructed at locations as specified on the road deactivation prescriptions plans

J) Cross ditch templates used must be consistent with access levels as specified on the road deactivation prescriptions plans

K) Cross ditch templates must be reshaped at the inlet end to allow a direct hydraulic connection to the road side ditch without restricting the specified access level.

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

TYPICAL CROSS DITCH TEMPLATE
TWO-WHEEL DRIVE ACCESS

TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING

DATE: JULY 14 1997
DRAWING NO: 012094-00-03-5

Appendix III: Road Deactivation Typical Drawings
199
NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

Typical Cross Ditch Template #2

General Notes:
1. Typical water crossing templates are used to describe the size and shape of a dip or be constructed in a road to facilitate vehicular access at water crossings or other locations.
2. Typical cross ditch templates are used to describe the size and shape of a dip or to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.
3. For cross ditch and ford definitions and notes see DWG. 05.
4. For armouring details of fords see DWG. 04.
5. This drawing to be read in conjunction with DWG. 04 'Typical Ford and Squamish Culvert Details'. DWG. 05 'Typical Water Control Methods'.

Typical Cross Ditch Template Notes

H) Cross ditch templates are designed to carry a discharge equivalent to a 600mm culvert.
I) Cross ditches are to be constructed at locations as specified on the road deactivation prescriptions plans.
J) Cross ditch templates used must be consistent with access levels as specified on the road deactivation prescriptions plans.
K) Cross ditch templates must be reshaped at the inlet end to allow a direct hydraulic connection to the road side ditch without restricting the specified access level.

Scale 1:200

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

Typical Cross Ditch Template
Four-Wheel Drive Access

Typical Road Deactivation Prescriptions Drawing

Date: July 14, 1997
Drawing No: 012094-00-03-6

Approved Date: July 14, 1997

Revised Date: July 14, 1997

Approvals:

M.L. Approved W.D. Cripps Date: July 14, 1997

NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

TYPICAL CROSS DITCH TEMPLATE #3

GENERAL NOTES:

1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.

2. Typical cross ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.

3. For cross ditch and ford definitions and notes see Dwg. 05.

4. For armouring details of fords see Dwg. 04 "Typical Ford/Squash Culvert Details".

5. This drawing is to be read in conjunction with Dwg. 04 "Typical Ford and Squash Culvert Details".

TYPICAL CROSS DITCH TEMPLATE NOTES:

H) Cross ditch templates are designed to carry a discharge equivalent to a 600mm culvert.

I) Cross ditches are to be constructed at locations as specified on the road deactivation prescriptions plans.

J) Cross ditch templates used must be consistent with access levels as specified on the road deactivation prescriptions plans.

K) Cross ditch templates must be reshaped at the inlet end to allow a direct hydraulic connection to the road side ditch without restricting the specified access level.

SCALE 1:200
NOTE

These are typical drawings only and may not be applicable or appropriate in every situation. Drawing modifications, special site prescriptions and/or professional input may be required to address actual site conditions.

TYPICAL CROSS DITCH TEMPLATE #4

GENERAL NOTES:
1. Typical water crossing templates are used to describe the size and shape of a dip to be constructed in a road to facilitate vehicular access at water crossings or other locations.
2. Typical cross ditch templates are used to describe the size and shape of a dip to be constructed in a road to carry road surface water and ditch water off or across the road and to provide vehicular access along the road.
3. For cross ditch and ford definitions and notes see DWG. 05 "Typical Ford/Squawish Culvert Details".
4. For armouring details of fords see DWG. 04 "Typical Ford/Squawish Culvert Details".
5. This drawing to be read in conjunction with DWG. 04 "Typical Ford and Squawish Culvert Details", DWG. 05 "Typical Water Control Methods".

TYPICAL CROSS DITCH TEMPLATE NOTES

H) Cross ditch templates are designed to carry a discharge equivalent to a 60mm culvert
I) Cross ditches are to be constructed at locations as specified on the road deactivation prescriptions plans
J) Cross ditch templates used must be consistent with access levels as specified on the road deactivation prescriptions plans
K) Cross ditch templates must be reshaped at the inlet end to allow a direct hydraulic connection to the road side ditch without restricting the specified access level.

SCALE 1:200

Province of British Columbia
Ministry of Forests
Kamloops Forest Region

TYPICAL CROSS DITCH TEMPLATE
NO ACCESS (CLOSED)

TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING

DATE: JULY 14 1997

012094-00-03-8

Appendix III: Road Deactivation Typical Drawings
TABLE A
(FOR INFORMATION ONLY)

VEHICLE DIMENSION SUMMARY TABLE

<table>
<thead>
<tr>
<th>VEHICLE CLASSIFICATION</th>
<th>SUB-CLASSIFICATION</th>
<th>CENTER CLEAR HEIGHT mm</th>
<th>ANGLE OF DEPARTURE %</th>
<th>MINIMUM SAG CURVE mm</th>
<th>MINIMUM CREST CURVE mm</th>
<th>MAX. HT OF CREST CURVE IN 4.0m HORZ DISTANCE mm</th>
<th>MINIMUM WATER CROSSING WIDTH mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO WHEEL DRIVE TRUCKS</td>
<td>COMPACT PICK-UP</td>
<td>270</td>
<td>50%</td>
<td>4400</td>
<td>3000</td>
<td>750</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>FULL SIZE PICK-UP</td>
<td>270</td>
<td>45%</td>
<td>5400</td>
<td>3800</td>
<td>570</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>EXTENDED CAB PICK-UP</td>
<td>300</td>
<td>43%</td>
<td>6300</td>
<td>4850</td>
<td>430</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>CREW CAB PICK-UP</td>
<td>300</td>
<td>39%</td>
<td>7100</td>
<td>7000</td>
<td>280</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>MAX.</td>
<td>300</td>
<td>50%</td>
<td>7100</td>
<td>7000</td>
<td>750</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>MIN.</td>
<td>270</td>
<td>39%</td>
<td>4400</td>
<td>3000</td>
<td>280</td>
<td>700</td>
</tr>
<tr>
<td>FOUR WHEEL DRIVE TRUCKS</td>
<td>COMPACT PICK-UP</td>
<td>370</td>
<td>61%</td>
<td>4200</td>
<td>3100</td>
<td>730</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>FULL SIZE PICK-UP</td>
<td>300</td>
<td>45%</td>
<td>5800</td>
<td>4200</td>
<td>510</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>EXTENDED CAB PICK-UP</td>
<td>350</td>
<td>50%</td>
<td>6900</td>
<td>4040</td>
<td>530</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>CREW CAB PICK-UP</td>
<td>340</td>
<td>46%</td>
<td>6900</td>
<td>6200</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>COMPACT SPORT UTILITY</td>
<td>300</td>
<td>55%</td>
<td>4000</td>
<td>2650</td>
<td>910</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>FULL SIZE SPORT UTILITY</td>
<td>310</td>
<td>38%</td>
<td>6100</td>
<td>3300</td>
<td>670</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>MAX.</td>
<td>370</td>
<td>61%</td>
<td>6900</td>
<td>6200</td>
<td>910</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>MIN.</td>
<td>300</td>
<td>38%</td>
<td>4000</td>
<td>2650</td>
<td>330</td>
<td>600</td>
</tr>
<tr>
<td>SPECIAL ACCESS VEHICLE</td>
<td>FIRE PROTECTION VEHICLE</td>
<td>430</td>
<td>32%</td>
<td>9300</td>
<td>3350</td>
<td>660</td>
<td>1300</td>
</tr>
</tbody>
</table>

MINIMUM VEHICLE GROUND CLEARANCES AND ROAD PROFILE
TEMPLATE DIMENSIONS BY VEHICLE SUB-CLASSIFICATION

NOT TO SCALE

Province of British Columbia
MINISTRY OF FORESTS
KAMLOOPS FOREST REGION

VEHICLE DIMENSION SUMMARY TABLE
TABLE A
TYPICAL ROAD DEACTIVATION PRESCRIPTIONS DRAWING

DATE: JULY 14 1997
DRAWING NO.: 012094-00-03-9

Appendix III: Road Deactivation Typical Drawings