A Field Guide for Identification and Interpretation of Ecosystems of the Northwest Portion of the Prince George Forest Region

by
A. MacKinnon ¹, C. DeLong ², and D. Meidinger ¹

¹ British Columbia Forest Service
  Research Branch
  31 Bastion Square
  Victoria, B.C.
  V8W 3E7

² British Columbia Forest Service
  Forest Sciences Section
  1011-4th Avenue
  Prince George, B.C.
  V2L 3H9

February 1990
ACKNOWLEDGEMENTS

In addition to the authors, Steve Crudge, Helen Dudynsky, Gail Harrop, Glen Porter and Micheala Waterhouse assisted in data collection. Tracy Baloc helped organize and prepare botanical specimens for the herbarium. George Argus (Salicaceae), Adolf Ceska (Cyperaceae), Tracy Baloc, and Terry Wood identified or verified identification of vascular plant specimens. Frank Boas and Judy Godfrey (Hepaticae) identified the bryophytes and Trevor Goward identified the lichens. Kevin Burt prepared soil samples for analysis.

Angus McLeod (College of New Caledonia, Forestry), staff of the Silviculture and Timber Sections, Prince George Regional Office, the Fort St. James and Mackenzie District offices, and local licensees helped formulate management interpretations. Dennis Demarchi (Ministry of Environment) provided the wildlife descriptions in Section 3. Rick Annas, John Parminter, and Jim Pojar provided valuable review comments. The financial and logistical assistance of both District offices is gratefully acknowledged.

Word processing was by Jennifer Stuart and Louise Gronmyr. Figures were drafted by Lena MacMaster. Illustrations have been used, with permission, from Goward (1987), Hale (1979), Hitchcock et al. (1977), Schofield (1968), Szczawinski (1959, 1962), and Taylor (1966, 1973a, 1973b, 1974a, 1974b). Scientific names follow Taylor and MacBryde (1977) and common names follow Meidinger (1987).
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>USE OF THE GUIDE</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Identifying Biogeoclimatic Units</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Identifying Site Units</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Soils and topographic features</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Vegetation features</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Moisture and nutrient regimes</td>
<td>7</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Identification of units</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Management Interpretations</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>BIOGEOCLIMATIC UNITS</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Sub-Boreal Spruce (SBS) Zone</td>
<td>9</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Williston SBSmk - SBSmk2 (previously SBSo)</td>
<td>9</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Finlay - Peace SBSwk - SBSwk2 (previously SBSj2)</td>
<td>11</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Takla SBSwk - SBSwk3 (previously SBSn)</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Engelmann Spruce - Subalpine Fir (ESSF) Zone</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Omineca ESSFmv - ESSFmv3 (previously ESSFm3)</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>Boreal White and Black Spruce (BWBS) Zone</td>
<td>12</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Stikine BWBSdk - BWBSdk1 (previously BWBSe)</td>
<td>12</td>
</tr>
<tr>
<td>3.4</td>
<td>Spruce - Willow - Birch (SWB) Zone</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1</td>
<td>SWBb</td>
<td>13</td>
</tr>
<tr>
<td>3.5</td>
<td>Alpine Tundra (AT) Zone</td>
<td>16</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Atn</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>THE SBSmk2 VARIANT</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>THE SBSwk2 VARIANT</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>THE SBSwk3 VARIANT</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>THE ESSFmv3 VARIANT</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>THE BWBSdk1 VARIANT</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>LITERATURE CITED</td>
<td>106</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Meso slope position diagram</td>
<td>108</td>
</tr>
<tr>
<td>2</td>
<td>Hand texturing field guide</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>Identification of upland humus forms</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>Key to the identification of potential moisture regime</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>Key to the identification of soil nutrient regime</td>
<td>115</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

This field guide describes the ecosystems of the northwest portion of the Prince George Forest Region (Figure 1). The area covered by the guide extends from Williston Reservoir and the Rocky Mountain Trench north of it, in the east, to the Prince George/Prince Rupert Forest Region boundary in the west, and from the base of Williston Reservoir in the south to the Regional boundary again in the north. To the north and west, the units described in this guide continue beyond the regional boundaries. The area falls within the Rocky Mountain Trench (north), and the Cassiar and Omineca mountains physiographic regions (Holland 1976). The guide presents aids to the identification of described units, and management interpretations for each.

The units in this guide are described in the biogeoclimatic ecosystem classification (BEC) system. It is assumed that the user has a working knowledge of this system. Those unfamiliar with the system should consult Pojar (1983) for a non-technical account, or contact the Ecology personnel in the Forest Sciences Section, B.C. Ministry of Forests, Prince George. Most of the units described in this guide have also been described in other publications and reports: MacKinnon (1987)¹ for the ESSFmv3 (previously ESSFm4; Delong et al. (1985)² for the SBSwk2 (previously SBSj2); Trowbridge et al. (1983)³, and Meidinger and Lewis (1983)⁴ for the ATn, and Meidinger et al. (1986) for the SWBb. Wildlife values are described in Fenger et al. (1989).

The units described in this guide have been renamed as part of the provincial correlation of the ecological classification system. The old names, and the corresponding units described in this guide, are listed in Table 1. Additionally, the complete vegetation unit name for each site unit is given in Table 2. The SBSj1 and SBSj2 described in the central part of the


FIGURE 1. Biogeoclimatic units of the northwest portion of the Prince George Forest Region.
TABLE 1. New names for biogeoclimatic and site units in the northwest portion of the Prince George Forest Region

<table>
<thead>
<tr>
<th>Old variants and associations</th>
<th>New variants and site series</th>
</tr>
</thead>
<tbody>
<tr>
<td>All SWB units&lt;sup&gt;a&lt;/sup&gt;</td>
<td>(no change yet)</td>
</tr>
<tr>
<td>SBSj2</td>
<td>SBSwk2</td>
</tr>
<tr>
<td>01.1 Black Gooseberry - Oak Fern - Black Huckleberry</td>
<td>01 Sxw - Oak fern</td>
</tr>
<tr>
<td>01.2 Black Gooseberry - Oak Fern - Douglas Maple</td>
<td>01 Sxw - Oak fern</td>
</tr>
<tr>
<td>02 Black Huckleberry - Moss</td>
<td>02 Pl - Huckleberry - Cladina</td>
</tr>
<tr>
<td>03 Black Huckleberry - Bunchberry</td>
<td>03 Sxw - Huckleberry - Highbush-cranberry</td>
</tr>
<tr>
<td>No previous unit</td>
<td>04 Sb - Huckleberry - Clubmoss</td>
</tr>
<tr>
<td>04 Devil's Club - Oak Fern</td>
<td>05 Sxw - Devil's club</td>
</tr>
<tr>
<td>05 Spruce - Horsetail</td>
<td>06 Sxw - Horsetail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SBSn</th>
<th>SBSwk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Black Huckleberry - Oak Fern</td>
<td>01 Sxw - Oak fern</td>
</tr>
<tr>
<td>02 Douglas-fir - Purple Peavine</td>
<td>02 SxwFd - Purple peavine</td>
</tr>
<tr>
<td>03 Pine - False Solomon's Seal</td>
<td>03 Sxw - Huckleberry - Highbush-cranberry</td>
</tr>
<tr>
<td>05 Pine - Black Spruce</td>
<td>04 Sb - Labrador tea</td>
</tr>
<tr>
<td>04 Black Gooseberry - Black Twinberry</td>
<td>05 Sxw - Twinberry - Coltsfoot</td>
</tr>
<tr>
<td>06 Devil's Club - Fern</td>
<td>06 Sxw - Devil's club</td>
</tr>
<tr>
<td>07 Spruce - Horsetail</td>
<td>07 Sxw - Horsetail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SBSo</th>
<th>SBSmk2</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Highbush-cranberry - Coltsfoot</td>
<td>01 Sxw - Huckleberry - Highbush-cranberry</td>
</tr>
<tr>
<td>02 Pine - Soopolallie</td>
<td>02 Pl - Feathermoss - Cladina</td>
</tr>
<tr>
<td>03 Pine - Sitka Alder</td>
<td>03 Sxw - Huckleberry - Soopolallie</td>
</tr>
<tr>
<td>04 Pine - Black Spruce</td>
<td>04 Sb - Huckleberry - Spirea</td>
</tr>
<tr>
<td>05 Devil's Club - Oak Fern</td>
<td>05 Sxw - Oak fern</td>
</tr>
<tr>
<td>06 Spruce - Horsetail</td>
<td>06 Sxw - Horsetail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BWBS&lt;sub&gt;Se1&lt;/sub&gt;&lt;sup&gt;b&lt;/sup&gt;</th>
<th>BWBSdk1</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/04/05 Highbush-cranberry - Bunchberry or White Spruce - Step Moss</td>
<td>01 Sw - Knight's plume - Step moss</td>
</tr>
<tr>
<td>02 Pine - Lichen</td>
<td>02 Pl - Lingonberry - Feathermoss</td>
</tr>
<tr>
<td>03 Pine - Feathermoss</td>
<td>03 Sw - Wildrye - Toad-flax</td>
</tr>
<tr>
<td>04 Pine - Black Spruce</td>
<td>04 Sb - Lingonberry - Knight's plume</td>
</tr>
<tr>
<td>No previous unit</td>
<td>05 Sw - Soopolallie - Twinflower</td>
</tr>
<tr>
<td>No previous unit</td>
<td>06 Sw - Scouring-rush - Step moss</td>
</tr>
<tr>
<td>05/06/07 Black Spruce - Labrador Tea or Labrador Tea - Twinflower</td>
<td>07 Sb - Lingonberry - Coltsfoot</td>
</tr>
<tr>
<td>06/07 Spruce - Horsetail</td>
<td>08 Sw - Currant - Horsetail</td>
</tr>
<tr>
<td>07 Black Spruce - Sphagnum</td>
<td>09 Sb - Horsetail - Sphagnum</td>
</tr>
</tbody>
</table>
TABLE 1. (Continued)

<table>
<thead>
<tr>
<th>Old subzones and associations</th>
<th>New variants and site series</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSFn3</td>
<td>ESSFmv3</td>
</tr>
<tr>
<td>01 White-flowered Rhododendron - Black Huckleberry</td>
<td>01 Bl - Rhododendron - Feathermoss</td>
</tr>
<tr>
<td>02 Pine - Lichen</td>
<td>02 BIPl - Crowberry - Cladina</td>
</tr>
<tr>
<td>03 Black Huckleberry - Bunchberry</td>
<td>03 BlSb - Labrador tea</td>
</tr>
<tr>
<td>04 Black Huckleberry - Oak Fern</td>
<td>04 Bl - Oak fern - Knight's plume</td>
</tr>
<tr>
<td>06 Devil's Club - Oak Fern</td>
<td>05 Bl - Devil's club - Rhododendron</td>
</tr>
<tr>
<td>07 Black Twinberry -</td>
<td>06 Sxw - Huckleberry - Highbush-cranberry</td>
</tr>
<tr>
<td>Highbush-cranberry</td>
<td></td>
</tr>
<tr>
<td>No previous unit</td>
<td>07 Bl - Horsetail - Feathermoss</td>
</tr>
</tbody>
</table>

\(^{a}\) SWB units have not yet been correlated.

\(^{b}\) Various versions of descriptions for this subzone have preceded this guide so caution should be exercised in equating previous units to the new units.
<table>
<thead>
<tr>
<th>Site series</th>
<th>Full vegetation unit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBSmk2</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Sx - Vaccinium - Viburnum; Mertensia</td>
</tr>
<tr>
<td>02</td>
<td>Pl - Pleurozium - Cladina; Orthilia</td>
</tr>
<tr>
<td>03</td>
<td>Sx - Vaccinium - Viburnum; Shepherdia</td>
</tr>
<tr>
<td>04</td>
<td>Sb - Vaccinium (membranaceum) - Petasites; Spiraea</td>
</tr>
<tr>
<td>05</td>
<td>Sx - Gymnocarpium; Arnica</td>
</tr>
<tr>
<td>06</td>
<td>Sx - Equisetum; Cornus</td>
</tr>
<tr>
<td>SBSwk2</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Sx - Gymnocarpium; Acer</td>
</tr>
<tr>
<td>02</td>
<td>Pl - Vaccinium (membranaceum) - Cladina</td>
</tr>
<tr>
<td>03</td>
<td>Sx - Vaccinium - Viburnum; Rubus (parviflorus)</td>
</tr>
<tr>
<td>04</td>
<td>Sb - Vaccinium (membranaceum) - Petasites; Lycopodium</td>
</tr>
<tr>
<td>05</td>
<td>Sx - Oplopanax; Rubus (parviflorus)</td>
</tr>
<tr>
<td>06</td>
<td>Sx - Equisetum; Cornus</td>
</tr>
<tr>
<td>SBSwk3</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Sx - Gymnocarpium; Arnica</td>
</tr>
<tr>
<td>02</td>
<td>Fd - Picea - Rubus; Lathyrus (nevadensis)</td>
</tr>
<tr>
<td>03</td>
<td>Sx - Vaccinium - Viburnum; Rubus (parviflorus)</td>
</tr>
<tr>
<td>04</td>
<td>Sb - Ledum</td>
</tr>
<tr>
<td>05</td>
<td>Sx - Lonicera - Petasites; Ribes</td>
</tr>
<tr>
<td>06</td>
<td>Sx - Oplopanax; Rubus (parviflorus)</td>
</tr>
<tr>
<td>07</td>
<td>Sx - Equisetum; Rubus</td>
</tr>
<tr>
<td>BWBSdk1</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Sw - Ptilium - Hylocomium; typicum</td>
</tr>
<tr>
<td>02</td>
<td>Pl - Vaccinium (vitis-idaea) - Pleurozium</td>
</tr>
<tr>
<td>03</td>
<td>Sw - Elymus - Geocaulon</td>
</tr>
<tr>
<td>04</td>
<td>Sb - Vaccinium (vitis-idaea) - Ptilium; Pleurozium</td>
</tr>
<tr>
<td>05</td>
<td>Sw - Shepherdia - Linnaea</td>
</tr>
<tr>
<td>06</td>
<td>Sw - Equisetum (scirpoides) - Hylocomium</td>
</tr>
<tr>
<td>07</td>
<td>Sw - Ptilium - Hylocomium; Galium (boreale)</td>
</tr>
<tr>
<td>08</td>
<td>Sb - Vaccinium (vitis-idaea) - Ptilium; Petasites</td>
</tr>
<tr>
<td>09</td>
<td>Sw - Ribes (triste) - Equisetum</td>
</tr>
<tr>
<td>10</td>
<td>Sb - Equisetum - Sphagnum</td>
</tr>
<tr>
<td>ESSFmv3</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Bl - Rhododendron - Arnica; Sorbus</td>
</tr>
<tr>
<td>02</td>
<td>Pl - Empetrum - Cladina</td>
</tr>
<tr>
<td>03</td>
<td>Bl - Picea (mariana) - Ledum</td>
</tr>
<tr>
<td>04</td>
<td>Bl - Gymnocarpium - Ptilium; typic</td>
</tr>
<tr>
<td>05</td>
<td>Bl - Oplopanax - Rhododendron</td>
</tr>
<tr>
<td>06</td>
<td>Bl - Delphinium - Ptilium</td>
</tr>
<tr>
<td>07</td>
<td>Bl - Equisetum - Pleurozium</td>
</tr>
</tbody>
</table>
Prince George Region have been recognized as being very similar to the SBSn described in the western part of the Region. As a result, the SBSj1, SBSj2, and SBSn have been renamed the SBSwk1, SBSwk2, and SBSwk3, respectively. The SBSse2 and SBSso, also recognized as being very similar, have been renamed the SBSmk1 and the SBSmk2, respectively.

The new biogeoclimatic unit codes and names are designed to be connotative—that is, they describe the climate of the unit, relative to other subzones in the zone. The connotative symbols in this guide describe the relative moisture (x = very dry, d = dry, m = moist, w = wet, v = very wet) and relative temperature (v = very cold, c = cold, k = "kool", m = mild, w = warm, h = hot) for each subzone/variant within its zone. For example, the Wet, Cool ("Kool") Sub-Boreal Spruce biogeoclimatic unit is coded SBSwk; the Moist "Kool" unit is coded SBSmk.

The site units have also been correlated and renamed. The number of units has been reduced, and similar units in different variants have been given the same name. For instance, the units in this guide previously recognized as the "Black Huckleberry - Oak fern" (SBSn/01), "Black Gooseberry - Oak fern" (SBSj2/01), and "Devil's Club - Oak fern (SBSo/05) ecosystem associations are all now within "Sxw - Oak fern" site association. They share this name because they are site series which are recognized as having similar "quality" (actual available moisture and nutrients) and vegetation potential. They also respond in a similar fashion to management practices.

Until correlations of the SWB and the wetland units have been completed, these should be referred to by their old names. When correlation is complete, the appropriate pages in this guide will be replaced with the new descriptions of the correlated units.

2 USE OF THE GUIDE

The guide is divided into nine sections: the Introduction is Section 1; Section 2 describes the use of the guide; Section 3 describes the biogeoclimatic units (variants) included in the guide, and differentiates them; Sections 4-8 describe the site units within each variant, and their management interpretations; and Section 9 is Literature Cited.

2.1 Identifying Biogeoclimatic Units

Biogeoclimatic units are most easily identified from maps. Figure 1 provides an overview of the distribution of these units within the area covered by this guide. Biogeoclimatic unit maps at a scale of 1:250 000 are available from the Ministry of Forests (MOF) District Offices, or the Forest Sciences Section, MOF, Prince George.

If an area lies near a mapped biogeoclimatic unit boundary and it is not clear which biogeoclimatic unit it belongs to, the user should compare the site units found in the area to those described for both biogeoclimatic units, and select the unit that best fits.
2.2 Identifying Site Units

Site units can be identified by a combination of soil, site and vegetation factors, which together are used to derive ecological moisture and nutrient regimes for the site. Having selected the appropriate biogeoclimatic unit (Section 2.1), the user should inspect the area under consideration to determine if there are obvious moisture or nutrient differences which have led to the development of several vegetation units on the site. If several site units appear to be present, the user should stratify the area before identifying the units. At each different site unit, the user should then record site features (2.2.1) and vegetation features (2.2.2), and use these to determine moisture and nutrient regimes (2.2.3).

2.2.1 Soils and topographic features

The most important topographic characteristics to note are: slope position (Appendix 1), slope gradient, and aspect. The most important soil characteristics to note are: soil texture (procedures for determining soil texture are given in Appendix 2); coarse fragment %; humus form and depth (procedures for determining humus form are given in Appendix 3); soil drainage class; depth to water table; and rooting depth.

2.2.2 Vegetation features

The plant species on the site and their relative abundance should be noted. Vegetation as described in this guide is for climax or near-climax ecosystems. Caution must be exercised in using vegetation to classify disturbed sites. Species occurring infrequently but sometimes with moderate cover are enclosed in square parentheses ([ ]). Plant guides such as "Some Common Plants of the Sub-Boreal Spruce Zone" (Pojar et al. 1982) or "Some Common Plants of the Skeena Region" (Coupé et al. 1982) are helpful, and may be available from the Forest Sciences Section, MOF, Prince George.

2.2.3 Moisture and nutrient regimes

The information from soils, topography and vegetation is used to estimate the relative amounts of moisture and nutrients available for plant growth. The guide user must keep two important factors in mind:

i. Moisture and nutrient regimes are relative within a biogeoclimatic unit. For instance, a site that is average in moisture regime in the SBSwk2 will be wetter than a site that is average in moisture regime in the SBSmk2.

ii. All factors must be taken into account when soil moisture and nutrient regime are determined. One factor can compensate for another; for instance, a coarse-textured soil, which would be expected to be dry, could be wetter if it occurred at the base of a slope.
Moisture and nutrient regimes can be estimated using the keys in Appendices 4 and 5.

2.2.4 Identification of units

After gathering soils, topographic, and vegetation information, the user should now proceed to:

i. the edatopic grid (e.g., Figure 2) where the moisture and nutrient regime can be used to locate the site unit on the grid; and

ii. the key to site units, where dichotomous keys use the soils, topographic, and vegetation features to identify a site unit.

The edatopic grid and the key to site units will direct the user to a particular site unit, or units. Soils, topographic, and vegetation features on the site can then be compared with those summarized for the particular site unit(s) to ensure the proper site unit is identified. Soil and site features characteristic of a certain site unit, or particularly useful in distinguishing it from other site units, are marked with an asterisk (*).

2.3 Management Interpretations

Once the site unit has been identified, the management interpretations for that unit are available on the page adjacent to the site unit description. Interpretations are offered as guidelines to the preparation of management prescriptions; they detail the opportunities and constraints that a resource manager must consider when dealing with a particular ecosystem. Management interpretations will be revised as more information, different technologies and changing management objectives dictate. In the site preparation section of the interpretations, preferred methods of site preparation are marked with an asterisk (*). More information about mechanical site preparation is available in Coates and Haeussler (1987).

3 BIOGEOCLIMATIC UNITS

The northwest portion of the Prince George Forest Region (Figure 1) extends from Williston Reservoir and the Rocky Mountain Trench north of it, in the east, to the Prince George/Prince Rupert Forest Region boundary in the west, and from the base of Williston Reservoir in the south to the regional boundary again in the north. To the north and west, of course, the units described in this guide continue beyond the regional boundaries. The area covered by this guide falls within the Rocky Mountain Trench (north), and Cassiar and Omineca mountains physiographic subdivisions (Holland 1976).
Five biogeoclimatic zones are recognized in this area: the Sub-Boreal Spruce (SBS) zone at lower elevations in the south, with the Engelmann Spruce - Subalpine Fir (ESSF) zone above it in the subalpine; the Boreal White and Black Spruce (BWBS) zone at lower elevations in the north, with the Spruce - Willow - Birch (SWB) and ESSF above it in the subalpine; and the Alpine Tundra (AT) zone above treeline over the entire area. No units have been described in the SWB or AT, and consequently these zones are not discussed beyond this section.

3.1 Sub-Boreal Spruce (SBS) Zone

The SBS zone within the study area occurs: around the flat shores of Williston Reservoir as far north as Ingenika Arm (SBSmk2 - previously SBSo); in the valley between the Rocky and Omineca Mountains, as far north as Peace Reach, surrounding the SBSmk2 and fingering into the side valleys of both ranges (SBSwk2 - previously SBSj2); and in the valleys of the western Omineca and eastern Skeena Mountains (SBSwk3 - previously SBSn). Above all three SBS variants lies the ESSF; the SBS occurs below about 1100 m over most of the area. The climate is fairly uniform in the SBS throughout this area, with the SBSwk2 and (presumably) SBSwk3 being wetter than the SBSmk2. Climate data are summarized in Table 3.

The SBS has climax forests dominated by hybrid white spruce (Picea glauca x P. engelmannii), subalpine fir (Abies lasiocarpa), or occasionally Douglas-fir (Pseudotsuga menziesii) (in the very south of the SBSwk3) or lodgepole pine (Pinus contorta) (on very dry sites, or on some ecosystems with black spruce). The ESSF forests have canopies dominated by Engelmann spruce (Picea engelmannii) and subalpine fir, with white-flowered rhododendron (Rhododendron albiflorum) in the understory. Forests of the BWBS to the north have more black spruce (Picea mariana,) and lodgepole pine in the main canopy on upland sites, primarily white spruce (Picea glauca) rather than hybrid white spruce, and the presence (e.g., mountain monkshood [Aconitum delphiniifolium]) and absence (e.g., most ferns) of key indicator species.

3.1.1 Williston SBSmk - SBSmk2 (previously SBSo)

The SBSmk2 occurs around the flat shores of Williston Reservoir, from Mackenzie in the south to Ingenika Arm in the north, and north up the Ospika Arm (see Figure 1). This is the driest of the SBS units described in the area, being in the rainshadow of the Omineca Mountains. Climate data are presented in Table 3. Climax forests have canopies of hybrid white spruce, with lodgepole pine on drier sites and subalpine fir on wetter sites. Lodgepole pine is a common seral species on most sites. The SBSmk2 is most easily distinguished from the SBSwk2 by the absence of oak fern (Gymnocarpium dryopteris) on mesic sites.
TABLE 3. Summary climate data for biogeoclimatic units

<table>
<thead>
<tr>
<th>BGC unit</th>
<th>Seasonal precipitation</th>
<th>Annual precipitation</th>
<th>Annual mean temperature</th>
<th>Mean annual snowfall</th>
<th>Frost-free period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May-Sept (mm)</td>
<td>(mm)</td>
<td>(°C)</td>
<td>(cm)</td>
<td>(days)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>SBSmk2</td>
<td>250</td>
<td>210-295</td>
<td>690</td>
<td>N/A</td>
<td>+1.2</td>
</tr>
<tr>
<td>SBSwk2</td>
<td>335</td>
<td>210-535</td>
<td>905</td>
<td>550-1915</td>
<td>+1.0</td>
</tr>
<tr>
<td>SBSwk3</td>
<td>260</td>
<td>225-295</td>
<td>610</td>
<td>520-700</td>
<td>N/A</td>
</tr>
<tr>
<td>ESSFmv3</td>
<td>260</td>
<td>205-315</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BWBSdk1</td>
<td>225</td>
<td>130-280</td>
<td>405</td>
<td>325-505</td>
<td>-0.2</td>
</tr>
<tr>
<td>SWBb</td>
<td>350</td>
<td>255-445</td>
<td>580</td>
<td>460-700</td>
<td>-1.9</td>
</tr>
<tr>
<td>ATn</td>
<td>425</td>
<td>285-560</td>
<td>1460</td>
<td>755-2170</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

The extensive lowland habitat that surrounds Williston Reservoir supports small populations of wintering moose and caribou, black bear and grizzly bear, as well as many species of furbearers, such as marten, lynx, wolverine, gray wolf, beaver and muskrat. Most of the important wintering habitat for moose and caribou has been flooded by the reservoir.

### 3.1.2 Finlay - Peace SBSwk - SBSwk2 (previously SBSj2)

The SBSwk2 occurs at lower elevations (below 1100 m) in the valley between the Rocky and Omineca mountains, surrounding the SBSmk2 and fingerling into the side valleys of both mountain ranges (see Figure 1). Correlation has lumped this unit with the SBSwk3 (formerly SBSn) as variants. This was done to reflect the similarity of zonal (average moisture and nutrient regime) sites. (The SBSwk1 [formerly SBSj1] is the third variant in this subzone.)

Climate in the SBSwk2 is wet and cool, with mean annual precipitation of 824 m and mean annual temperature of +0.7°C. The wetter climate of this and the SBSwk3 reflects their position in the foothills and valley bottoms of major mountain ranges.

Climax forests have canopies of hybrid white spruce and subalpine fir, with lodgepole pine as a seral species on mesic and drier sites, and as a topoedaphic climax species on very dry sites. Devil's club (Oplopanax horridus) is more common in this subzone than the SBSmk2.

This variant provides summer habitat for moose, mule deer, black bear and grizzly bear, and early fall habitat for caribou.

### 3.1.3 Takla SBSwk - SBSwk3 (previously SBSn)

The SBSwk3 occurs in the valleys of the western Omineca Mountains, at elevations below 1100 m, from Trembleur and Inzana lakes in the south, north to the north end of Bear Lake (see Figure 1) and probably further north and west.

Climate in the SBSwk3 has not been well documented, but is assumed (from vegetation development) to be very similar to that of the SBSwk2.

Climax forests in the SBSwk3 are similar to those in the SBSwk2, with canopies dominated by hybrid white spruce and subalpine fir, and lodgepole pine as a common seral and topoedaphic species. Some ecosystems in the southern portions of this variant have Douglas-fir in the canopy.

This variant provides summer habitat for moose, black bear and grizzly bear, as well as habitat for beaver, muskrat, spruce grouse and ruffed grouse.

### 3.2 Engelmann Spruce - Subalpine Fir (ESSF) Zone

The ESSF zone within the study area consists of one variant, the ESSFmv3 (previously ESSFn3).
3.2.1 Omineca ESSFmv - ESSFmv3 (previously ESSFn3)

The ESSFmv3 within the study area occurs above approximately 1100 m and below the Alpine Tundra. It is replaced in the northern latitudes by another subalpine zone, the SWB (see Figure 1).

The climate of the ESSFn3 is moist and very cold, with 714 mm of total annual precipitation, the majority falling as snow. Mean annual temperature is -0.2°C. The ESSF units in general are cooler and wetter than the SBS units which occur below them.

Climax forests have canopies of Engelmann spruce and subalpine fir.

This variant provides a variety of habitats for wildlife. Mature stands of pine and spruce with dense arboreal lichen are used by caribou in the winter. Moist sites such as avalanche tracks and subalpine meadows are used in the summer by moose, black bear and grizzly bear. The extensive conifer forests are used by marten, red squirrel, spruce grouse, great horned owl and great gray owl. South-facing rock outcrops are used by mountain goat during the winter.

### 3.3 Boreal White and Black Spruce (BWBS) Zone

The BWBS zone within the study area consists of one subzone, the BWBSdk1 (previously BWBSe).

#### 3.3.1 Stikine BWBSdk - BWBSdk1 (previously BWBSe)

The Cordilleran Boreal White and Black Spruce (BWBSdk1) subzone is a lowland to montane subzone occurring north of Germansen Landing between 250 and 1100 m in elevation, in the main valleys of the Omineca Mountains (see Figure 1).

Climate is cooler and drier than that of the SBS in the study area, though growing season temperatures may exceed those in any other biogeoclimatic unit covered in this guide. Climate data (based on limited sampling) are summarized in Table 3.

Forestry activities have been limited in the BWBSdk1, though the area can be expected to be extensively harvested as licensees move north. Climax forests have canopies of white spruce (Picea glauca) and lodgepole pine, with black spruce sometimes occurring in the main canopy on upland sites. The entire subzone is climatically dry, and has an extensive fire history, documented in Parminter (1984)\(^5\). Lodgepole pine is a common topoedaphic and climatic climax species. It also forms extensive seral stands. Moist and wet indicator species such as devil’s club (Oplopanax horridus) and the larger ferns (e.g., spiny wood fern [Dryopteris assimilis] and lady fern [Athyrium filix-femina]), common in the SBS, are absent here.

---

This subzone provides some of the best remaining moose winter habitat in the Finlay watershed. A relict population of Rocky Mountain elk occurs in the Ingenika Valley. The riparian habitats and lowlands support moose, black bear, grizzly bear, gray wolf, beaver, muskrat and spruce grouse. Mature stands of pine and spruce with dense arboreal and sometimes terrestrial lichen are used by caribou during the winter. The extensive conifer forests are used by marten, red squirrel, spruce grouse, great horned owl and great gray owl.

3.4 Spruce - Willow - Birch (SBS) Zone

The SWB zone within the study area consists of one subzone, the SWBB.

3.4.1 SWBB

The SWBB was sampled and described as part of the Northern Fire Ecology Project. The material presented here is from Meidinger et al. (1986) ⁶, and Pojar (1983). As the site units have not been formally described, they are discussed here in general terms only and not dealt with elsewhere in the report.

The SWBB is the subalpine subzone occurring north of the Mesilinka River, and northeast of the Skeena River, to the Yukon and Northwest Territories borders. It ranges in elevation from 1050 to 1500 m, dropping as low as 800 m in some cold valleys. The SWBB occurs above the BWBSdk1 to the west of the Rocky Mountain Trench. Over much of the northern area covered by this guide, however, where the elevation does not drop below 1050 m, the SWBB occurs down to the valley bottoms (see Figure 1).

Climate is interior subalpine, cold throughout the year and cool even in the summer. Total annual precipitation is low (569 mm), with the vast majority falling as snow. Climate data for the SWBB are summarized in Table 3.

The zonal ecosystem of the SWBB is a White Spruce - Grey-leaved Willow - Scrub Birch association. The relatively open tree canopy is usually dominated by white spruce, with a minor component of subalpine fir, although the latter species may co-dominate with white spruce in some stands. Of the seral species in this association, lodgepole pine is often present and trembling aspen occasionally. The shrub layer is usually moderately to well developed and is dominated by scrub birch (Betula glandulosa), willows, shrubby cinquefoil (Potentilla fruticosa), and soopolallie (Shepherdia canadensis). The moderately to poorly developed herb layer is dominated by the dwarf woody plants crowberry (Empetrum nigrum) and lingonberry (Vaccinium vitis-idaea). The well-developed

moss layer is dominated by step moss, although red-stemmed feathermoss is often common. Cladina lichens and the leafy lichens Peltigera aphthosa and Nephroma arcticum are usually present.

On dry (subxeric), coarse-textured glaciofluvial materials or on south-facing slopes of coarse morainal deposits, a Lodgepole Pine - Scrub Birch - Lichen association is found. The relatively open canopy of these woodland ecosystems is dominated by lodgepole pine, with a minor component of white spruce. Trembling aspen and subalpine fir occasionally occur as well. The moderately to poorly developed shrub layer is usually dominated by scrub birch; but sometimes white spruce, lodgepole pine, or subalpine fir dominate the understory. The herb layer is dominated by dwarf woody plants such as crowberry, kinnikinnick (Arctostaphylos uva-ursi), lingonberry, and dwarf blueberry (Vaccinium caespitosum). The moss layer is only moderately developed and is co-dominated by mosses and lichens; litter cover is significant.

On gravelly fluvial materials (fans and upper terraces) a slightly moister association (a White Spruce - [Lodgepole Pine] - Step Moss association) is found. The tree layer is well developed and is dominated by white spruce, often with a significant component of lodgepole pine. Trembling aspen and black spruce are infrequent species. The shrub layer is poorly developed, likely as a result of the denser canopy. Common species are grey-leaved willow, soopolallie, and common juniper. The herb layer is moderately developed, with fuzzy-spiked wildrye (Elymus innovatus), Altai fescue (Festuca altaica), arctic lupine (Lupinus arcticus), one-sided wintergreen (Orthilia secunda), bastard toadflax (Geocaulon lividum), and twinflower (Linnaea borealis) being the common species. The well-developed moss layer is dominated by step moss.

Because of repeated fires, they are considered to be fire sub-climax ecosystems.
On fine-textured morainal materials with subhygric to hygric moisture regimes, open white spruce - subalpine fir stands with well-developed herb layers are found. The shrub layer is dominated by grey-leaved willow, with scrub birch also common. Common herbs include Altai fescue, arctic lupine, tall bluebells, heart-leaved arnica, tall larkspur, mountain monkshood, and subalpine daisy (Erigeron perearinus). The well-developed moss layer is dominated by step moss and red-stemmed feathermoss. Common leafy liverwort (Barbilophozia lycopodioides) is also present.

Forest shrub-layer dominated ecosystems are common, ranging from swamps and fens to dry colluvial scrub. Shrub-dominant ecosystems are especially common in the wide valleys influenced by cold air drainage, on dry colluvial slopes, and in the upper elevation parkland-scrub. Subalpine grasslands are frequent, but not extensive in the SWB (Pojar 1983).

Forestry capability of the SWB is limited by the northerly latitude and subalpine continental climate. The SWB is near the limit of climatic conditions that can support forest growth. Most of the zone likely produces less than 1 m$^3$/ha per year, although sites with warmer soil temperatures and a longer growing season (i.e., favourable S and W aspects, coarser-textured glaciofluvial fans and terraces, lower elevations) might produce up to 2-2.5 m$^3$/ha per year. The SWB in the Mackenzie TSA is the southernmost part of the zone and sites are generally more productive than the zone as a whole. Existing mature stands, however, are short and often quite open, and are therefore mostly non-commercial now and into the foreseeable future. If managed, rotation lengths in the order of 150 years could be expected.
The management of lands in the SWB and of the fires that these lands inevitably experience needs to be based on appreciation of the realities of resource capabilities. The capability of the SWB for wildlife is not easily surpassed (Pojar et al. 1983). This subzone provides a variety of habitats for wildlife in northern British Columbia. Valley bottom riparian forests and wetlands are used by moose, grizzly bear, black bear and gray wolf. Open pine forests with terrestrial or arboreal lichen are used by caribou in the winter. The extensive shrub-filled valleys are used by moose, caribou, grizzly bear, gray wolf, wolverine and willow ptarmigan. Avalanche tracks and seepage sites are important for grizzly bear. Steep southerly aspect grass/shrub habitats are used by Stone's sheep, especially in the winter, while the more rugged, higher elevation sites are used by mountain goat. In the Rocky Mountain Foothills, the southerly-facing aspen/shrub/grass habitats are important for Rocky Mountain elk, moose, gray wolf and grizzly bear. As well, small populations of both mule deer and white-tailed deer use this habitat in the Muskwa Valley, and a large herd of Plains Bison has escaped captivity and taken up residence in this subzone within the Sikanni Chief and Halfway river watersheds of the Rocky Mountain Foothills.

The potential for recreation, particularly of the wilderness type, is also excellent. In accordance with society's desire for wildlife for consumptive and non-consumptive use, localized key habitats could be managed or enhanced by prescribed fire.

3.5 Alpine Tundra (AT) Zone

The AT zone within the study area consists of one subzone, the ATn.

3.5.1 ATn

The ATn was described in Meidinger and Lewis (1983)\(^7\), primarily from the work of Pojar (1986) and Luckhurst (1973). As the site units have not been formally described, and as the area has no value in forestry terms, the site units are described in general terms here and not dealt with elsewhere in the report.

The climate of the ATn is the most severe of any biogeoclimatic unit in British Columbia. Winters are long and cold, with at least 7 months with mean temperature less than 0°C. Frost-free periods are very short, and frost can occur at any time during the year.


The ATn is the alpine subzone throughout the area covered by this guide, occurring at elevations above approximately 1500 m, over the ESSFmv3 and the SWBb subalpine units. The ESSFmv3 and SWBb grade into parkland (or scrub) subzones in their upper elevations below treeline.

The AT is characteristically a treeless zone. Trees, however, do occur sporadically in the alpine, but usually in a krummholz form. Alpine vegetation is dominated by shrubs, herbs, bryophytes, and lichens. Rocks, ice, and snow are also characteristic of much of the alpine landscape.

Alpine plant communities vary from shrubfields or scrub-dominated vegetation at lower elevations, to grass- and/or herb-dominated vegetation at middle elevations, to lichen-dominated vegetation at the highest elevations.

Alpine plants are usually small, close to the ground, and often separated by bare soil or rock. The environment is harsh in the alpine and the tundra vegetation does little to modify the micro-environment. Therefore, the effect of environmental factors such as topographic position, exposure to wind and insolation, and distribution of snow and meltwater, are strongly expressed in alpine plant communities. Hence, alpine vegetation is often present as a complex mosaic in response to environmental and soil conditions.

"Tundra" vegetation, consisting of prostrate shrubs, short-stemmed perennial herbs, bryophytes, and lichens, dominates the ATn. Some shrub thicket or scrub vegetation is found at the lower elevations.

The zonal ecosystem of the ATn is a "dwarf willow - sedge - grass - cryptogam" tundra. The dominant and characteristic species are netted willow (Salix reticulata), polar willow (Salix polaris), small-awned sedge (Carex microchaeta), awned haircap moss (Polytrichum piliferum), and the lichens Cetraria spp., Stereocaulon spp., and Thamnolia vermicularis. Other common species are alpine sweetgrass (Hierochloe alpina), Altai fescue, alpine bluegrass (Poa alpina), alpine fescue (Festuca brachyphylla), alpine bistort (Bistorta vivipara), and moss campion (Silene acaulis). The zonal ecosystem occurs over a wide range of mesic to moist (subhygric) sites on moderately sloping to flat topography. Soils include Sombric and Melanic Brunisols, Regosols, and Cryosols.

On exposed, windswept, convex ridges, a "cushion plant" tundra is found. Soils are usually Brunisols or Regosols on gravelly or rubbly colluvial veneers. Bare mineral soil is often exposed and frost sorting and heaving are active processes producing patterned ground. Common plants include entire-leaved white mountain-avens (Dryas integrifolia), blackish locoweed (Oxytropis nigrescens), moss campion, one-flowered cinquefoil (Potentilla uniflora), netted willow, alpine sweetgrass, small-awned sedge, and Bellard's kobresia (Kobresia myosuroides).
Another widespread ecosystem is the "alpine heath", characterized by four-angled mountain-heather (Cassiope tetragona), entire-leaved white mountain-avens, and netted and polar willows. Although it is possibly zonal at low elevations of the ATn, it is best developed on moist to mesic northern and eastern slopes. This is likely due to the greater snow accumulation and duration on these aspects. Soils are variable, and may be Dystric Brunisols, Regosols, Gleysols, Cryosols, or Organics. Seepage and solifluction are common processes. Although the dwarf shrubs are dominant, common herbs include moss campion, capitate lousewort (Pedicularis capitata), alpine bistort, small-awned sedge, short-stalked sedge (Carex podocarpa), arctic bluegrass (Poa arctica), and Altai fescue.

Fairly common on steep, generally south-facing slopes is an "Altai fescue - lichen tundra" ecosystem. Sites are well drained, mesic to slightly drier, and with light, discontinuous winter snow cover. Soils are usually Sombric or Melanic Brunisols. Vegetation is dominated by Altai fescue and mountain sage. Other common herbs are alpine sweetgrass, small-awned sedge, and spiked woodrush (Luzula spicata). Common cryptogams include awned haircap moss and the lichens Cetraria, spp., Cladina spp., Cladonia spp., and Stereocaulon spp.

Alpine seepage and snowbed areas are common, although often small. The vegetation is heterogeneous, so only the most widespread middle- to high-elevation seepage/snowbed type will be described here. The vegetation of this type is dominated by netted and polar willows, short-stalked sedge, arctic colt's-foot (Petasites frigidus), mountain sage, subalpine buttercup (Ranunculus eschscholtzii), and northern anemone (Anemone parviflora). A great diversity of other herbs is found, including white marsh-marigold (Caltha leptosepala), red willowherb, dwarf scurrying rush, alpine bistort, red-stemmed saxifrage (Saxifraga lyallii), alpine speedwell (Veronica wormskjoldii), Lapland reedgrass (Calamagrostis lapponica), three-flowered rush (Juncus triglumis), chestnut rush (Luzula parviflora), and alpine bluegrass. The soils are Gleysolic, Cryosolic, or Organic.

Alpine fellfield occurs on many mountain tops and high ridge crests. Terms such as "mountain-top detritus", "rubble sheet", and "blockfield" are used to describe this landscape unit. Fellfields are extensive areas of coarse, angular debris that form on level or gently sloping areas as a result of frost shattering and heaving. The windswept, complex terrain is a mosaic of snow-free patches and accumulation areas, and this factor influences the distribution of plants within the fellfield. Although a number of plant communities could be described on a microscale, overall the fellfields can be treated as a single unit. Vascular plants and most mosses and fruticose lichens are restricted to protected depressions and crevices. The most common herbs are alpine bitter-cress (Cardamine bellidifolia), alpine rockcress (Draba alpina), moss campion, tufted saxifrage (Saxifraga caespitosa), three-toothed saxifrage, purple
mountain saxifrage (*Saxifraga oppositifolia*), arctic cinquefoil (*Potentilla hyperborea*), short-awned sedge, alpine fescue, and curved alpine woodrush (*Luzula arcuata*). Dominant cryptogams are the mosses *Rhacomitrium lanuginosum* and awned haircap moss, and the lichens *Cetraria* spp., *Dactylinia* spp., *Parmelia* spp., *Umbilicaria* spp., *Stereocaulon* spp., and *Thamnolia vermicularis*. The soils of these periglacially active areas are Regosols.

Alpine shrub-dominated ecosystems are common at low to middle elevations. They are of two basic types: scrub birch thickets and Barratt's willow thickets. The scrub birch communities are common on mesic to moist, upper colluvial slopes and on glaciofluvial materials in high, exposed passes. The Barratt's willow communities are found on wet sites in alpine valleys, usually on gently sloping alluvial fans at the base of long slopes and within the meander plain of low-gradient alpine streams.

There is no wood production potential in the Alpine Tundra Zone. However, in conjunction with the subalpine SWB Zone, it provides some of the most important wildlife habitat in British Columbia. Moist, herbaceous meadows are used by Stone's sheep, caribou, willow ptarmigan, hoary marmot, and grizzly bear. Rounded, windswept vegetated ridges are used as winter habitat by caribou and Stone's sheep. Steep, rugged vegetated alpine is used by mountain goat. Most of the higher elevation alpine in the Muskwa and Cassiar ranges is barren, devoid of herbaceous vegetation and therefore not supporting wildlife, except it is often used by cow caribou during calving, or by cliff-nesting birds of prey such as gyrfalcon and golden eagle.

The potential for recreation is high. The alpine terrain varies from the rugged Battle of Britain Range to the more rounded Omineca Mountains. Most areas provide a wide diversity of alpine vegetation. In combination with the SWB, most of the area has considerable vegetation and wildlife diversity, and provides many opportunities for hiking, horseback riding, and hunting. A few guide-outfitters operate in the area. Despite the great potential, the remoteness of this area continues to limit the recreational use of the alpine.
FIGURE 2. Edatopic grid displaying site series in the SBSmk2 variant.
KEY TO SITE UNITS OF THE SBSmk2

1a Organic soils
1b Mineral soils

2a Canopy dominated by white spruce

3a Usually level; often adjacent to moving water; *Equisetum* spp. (p. 24) moderate to high cover (>5% cover)

3b Slope position variable; often not adjacent to moving water; *Equisetum* spp. low cover (<1%) or absent

4a Generally lower slope, or level and influenced by water table; *Oplopanax horridus* (p. 10) and *Gymnocarpium dryopteris* (p. 26) moderate to high cover (>1%)

4b Generally not lower slope and if level, not influenced by a water table; *Oplopanax horridus* and *Gymnocarpium dryopteris* low cover (<5%) or absent

5a Generally upper slope or crest, if level then coarse textured; *Lonicera involucrata* (p. 9) low cover (<1%) or absent

5b Generally mid to toe slope, if level then medium textured; *Lonicera involucrata* generally moderate cover (>5%)

2b Canopy dominated by lodgepole pine

6a Generally lower slope, or level and influenced by water table; *Oplopanax horridus* (p. 10) and *Gymnocarpium dryopteris* (p. 26) moderate to high cover (>1%)

6b Generally not lower slope and if level, not influenced by a water table; *Oplopanax horridus* and *Gymnocarpium dryopteris* low cover (<1%) or absent

---

9 Page numbers refer to the publication "Some Common Plants of the Sub-Boreal Spruce Zone" (Pojar et al. 1982).
7a  Slope gradient 10%, aspect flat or north-facing; black spruce present in canopy

7b  Slope gradient and aspect variable; black spruce absent from canopy

8a  Level or crest slope position; coarse-textured soils; Arctostaphylos uva-ursi (p. 16) present

8b  Slope position and soil texture variable; Arctostaphylos uva-ursi absent

9a  Generally upper slope or crest, if level then coarse-textured; Lonicera involucrata low cover (<1%) or absent

9b  Generally mid to toe slope, if level then medium textured; Lonicera involucrata generally moderate cover (>5%)
SBSmk2/01

Sxw - HUCKLEBERRY - HIGHBUSH-CRANBERRY

VEGETATION

Tree Layer: 40% cover
Hybrid white spruce, lodgepole pine

Shrub Layer: 50% cover

- Viburnum edule (highbush-cranberry)
- Rosa acicularis (prickly rose)
- Lonicera involucrata (black twinberry)
- Vaccinium membranaceum (black huckleberry)
- Alnus viridis ssp. sinuata (Sitka alder)
- Rubus parviflorus (thimbleberry)
- Alnus viridis ssp. sinuata (hybrid white spruce)
- Subalpine fir

Herb Layer: 70% cover

- Cornus canadensis (bunchberry)
- Petasites palatus (palmate coltsfoot)
- Linnaea borealis (twinflower)
- Rubus pubescens (trailing raspberry)
- Smilacina racemosa (false Solomon's seal)
- Mitella nuda (common mitrewort)
- Orithilia secunda (one-sided wintergreen)
- Lycopodium annotinum (stiff clubmoss)
- Epilobium angustifolium (fireweed)
- Aralia nudicaulis (wild sarsaparilla)
- Mertensia paniculata (tall bluebells)
- Equisetum arvense (common horsetail)
- Pyrola asarifolia (rosy wintergreen)
- Geocaulon lividum (bastard toad-flax)

Moss Layer: 90% cover

- Pleurozium schreberi (red-stemmed feathermoss)
- Vaccinium membranaceum (knight's plume)
- Ptilium crista-castrensis (step moss)
- Hylocomium splendens

SOIL AND SITE

- Moisture Regime: mesic
- Nutrient Regime: poor - rich
- * Slope Gradient (%): 0-25
- * Slope Position: mid to toe or level
- Parent Material: morainal or glacio-fluvial
- * Soil Texture: usually moderately coarse or medium
- Coarse Fragments(%): 0-75
- Site Index:
  - PI 28 (26-30)
  - Sx 29 (24-34)

Petasites palatus DISTRIBUTION: very common
SXW - HUCKLEBERRY - HIGHLBUSH-CRANBERRY (SBSmk2/01)

INTERPRETATIONS

Logging:
- clearcut
- attempt to reduce slash accumulations
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals

Site Preparation:

Objective
- enhance natural regeneration; reduce debris; improve planter access

Mechanical
- light drag scarify*; patch scarify; mix humus with mineral soil

Prescribed fire
- light broadcast burn (remove L horizon) if logged in winter; pile and burn (if stand has 60%+ component of Sx)

Species choice:

Preferred
- PI, Sx

Acceptable

Brush hazard:
- moderate to high (trembling aspen, fireweed, black twinberry, thimbleberry)
- post-planting inspections of harvested sites should be carried out to determine the need for vegetation control

Reforestation:
- do not accept advance Bl regeneration
- conduct a PI cone survey. If cones are insufficient and competition moderate, plant PI stock without site preparation.
- plant Sx if Sx was leading species in original stand, or if there is a high component of aspen on site

Concerns:
- mistletoe, gall rust (if managing for PI); consider sanitation thinning on PI stands infected with mistletoe or gall rust
- frost heaving on coarse-textured soils
PI - FEATHERMOSS - CLADINA

VEGETATION

Tree Layer: 10% cover
Lodgepole pine

Shrub Layer: 30% cover
Shepherdia canadensis (soopolallie)
Rosa acicularis (prickly rose)
Viburnum edule (highbush-cranberry)
Spiraea betulifolia (birch-leaved spirea)
lodgepole pine
subalpine fir

Herb Layer: 10% cover
Arctostaphylos uva-ursi (kinnikinnick)
Linnaea borealis (twinflower)
Shepherdia canadensis (rough-leaved ricegrass)
Epilobium angustifolium (fireweed)
Cornus canadensis (bunchberry)
Vaccinium caespitosum (dwarf blueberry)
Orthilia secunda (one-sided wintergreen)

Moss Layer: 85% cover
Pleurozium schreberi (red-stemmed feathermoss)
Hylocomium splendens (step moss)
Polytrichum juniperinum (juniper haircap moss)
Cladina spp.

SOIL AND SITE

Moisture Regime: xeric - subxeric
Nutrient Regime: very poor - poor
Slope Gradient (%): 0-60
* Slope Position: level or crest
Parent Material: (glacio)fluvial or morainal
* Soil Texture: usually coarse
Coarse Fragments (%): 0-55
Site Index: PI 23 (15-32)

DISTRIBUTION: common, especially in large valley bottoms, but small in area
Logging:
- clearcut
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals

Site preparation:
Objective
- enhance natural regeneration; improve moisture status; reduce debris; improve planter access

Mechanical
- light drag scarify*; disc trench; mix humus with mineral soil

Prescribed fire
- do not burn

Species choice:
Preferred
- PI
Acceptable

Brush hazard:
- low

Reforestation:
- conduct a PI cone survey. If enough seed is present, mechanically treat site. If cones are insufficient, plant PI stock without site preparation.

Concerns:
- extreme drought periods
- mistletoe and gall rust
**VEGETATION**

Tree Layer: 30% cover
- Lodgepole pine, hybrid white spruce

Shrub Layer: 45% cover
- *Viburnum edule* (highbush-cranberry)
- *Rosa acicularis* (prickly rose)
- *Shepherdia canadensis* (soopolallie)
- *Alnus viridis ssp. sinuata* (Sitka alder)
- *Spiraea betulifolia* (birch-leaved spirea)
- *Vaccinium membranaceum* (black huckleberry)

Herb Layer: 35% cover
- *Cornus canadensis* (bunchberry)
- *Linnaea borealis* (twinflower)
- *Smilacina racemosa* (false Solomon's-seal)
- *Orthilia secunda* (one-sided wintergreen)
- *Epilobium angustifolium* (fireweed)
- *Rubus pubescens* (trailing raspberry)
- *Oryzopsis asperifolia* (rough-leaved ricegrass)
- *Aralia nudicaulis* (wild sarsaparilla)
- *Geocaulon lividum* (bastard toad-flax)

Moss Layer: 95% cover
- *Pleurozium schreberi* (red-stemmed feathermoss)
- *Hylocomium splendens* (step moss)
- *Ptilium crista-castrensis* (knight's plume)
- *Peltigera aphthosa* (wavy-leaved moss)

**SOIL AND SITE**

- Moisture Regime: submesic - mesic
- Nutrient Regime: poor - medium
- Slope Gradient (%): 0-45
- * Slope Position: mid to crest or level
- Parent Material: morainal or (glacio)fluvial
- * Soil Texture: medium to coarse
- Coarse Fragments (%): 0-60
- Site Index: Pl 26 (20-35), Sx 27 (18-35)

**DISTRIBUTION:** common
SXW - HUCKLEBERRY - SOOPOLALLIE (SBSmk2/03)

INTERPRETATIONS

Logging:
- clearcut
- attempt to reduce slash accumulations
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals

Site preparation:
Objective
- enhance natural regeneration; improve moisture status; reduce debris; improve planter access
Mechanical
- light drag scarify*; disc trench; mix humus with mineral soil
Prescribed fire
- do not burn
- may need to pile and burn

Species choice:
Preferred
- Pl
Acceptable

Brush hazard:
- low

Reforestation:
- conduct a Pl cone survey. If enough seed is present, mechanically treat site.

Concerns:
- mistletoe and gall rust. A mistletoe or gall rust sanitation program will likely be required; consider sanitation thinning on infected Pl stands.
- drought
SBSmk2/04

**Sb - HUCKLEBERRY - SPIREA**

**VEGETATION**

**Tree Layer:** 30% cover
- Lodgepole pine, black spruce, hybrid white spruce

**Shrub Layer:** 40% cover
- **Shepherdia canadensis** (soopallie)
- **Ledum groenlandicum** (Labrador tea)
- **Vaccinium membranaceum** (black huckleberry)
- **Rosa acicularis** (prickly rose)
- **Vaccinium myrtilloides** (velvet-leaved blueberry)
- subalpine fir
- black spruce

**Herb Layer:** 15% cover
- **Linnaea borealis** (twinflower)
- **Cornus canadensis** (bunchberry)
- **Geocaulon lividum** (bastard toad-flax)
- **Epilobium angustifolium** (fireweed)
- **Vaccinium caespitosum** (dwarf blueberry)
- **Gaultheria hispidula** (creeping-snowberry)
- **Lycopodium complanatum** (ground-cedar)
- **Oryzopsis asperifolia** (rough-leaved ricegrass)
- **Orthilia secunda** (one-sided wintergreen)
- **Calamagrostis canadensis** (bluejoint)

**Moss Layer:** 95% cover
- **Pleurozium schreberi** (red-stemmed feathermoss)
- **Hylocomium splendens** (step moss)
- **Peltigera aphthosa**
- **Ptilium crista-castrensis** (knight’s plume)
- **Cladina mitis**
- **Dicranum polysetum** (wavy-leaved moss)

**SOIL AND SITE**

**Moisture Regime:** submesic - subhygric
**Nutrient Regime:** very poor - poor
- **Aspect:** northerly or flat
- **Slope Gradient (%):** usually less than 10
- **Slope Position:** mid to lower or level
- **Parent Material:** glaciofluvial
- **Soil Texture:** medium to coarse
- **Coarse Fragments (%):** 0-40
- **Site Index:** PI 25 (20-29)
  Sx 24 (23-26)

**COMMENTS:** Often associated with compact soils.

**DISTRIBUTION:** common in some areas

*Gaultheria hispidula*
SB - HUCKLEBERRY - SPIREA (SBSmk2/04)

INTERPRETATIONS

Logging:  
- clearcut
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals

Site preparation:

Objective:  
- increase soil temperatures; enhance natural regeneration; reduce debris; improve planter access

Mechanical:  
- light drag scarify*; mix humus with mineral soil; spot mounding

Prescribed fire:  
- light broadcast burn (remove L horizon)

Species choice:

Preferred - Pl
Acceptable - 

Brush hazard:  
- low to moderate (trembling aspen, fireweed) brush competition will likely occur within 3 years of harvesting; sites should be inspected at 3 years to determine if any further treatments are required

Reforestation:  
- conduct a Pl cone survey. Planting is rarely required on this unit.

Concerns:  
- compact tills
- windthrow
- perched water table. Only harvest in the winter or dry part of summer. A slightly raised microsite may improve growth on areas which are subhygic.
- mistletoe, gall rust
Sxw - OAK FERN

VEGETATION

Tree Layer: 30% cover
Hybrid white spruce, subalpine fir, lodgepole pine

Shrub Layer: 40% cover
- **Oplopanax horridus** (devil's club)
- **Ribes lacustre** (black gooseberry)
- **Lonicera involucrata** (black twinberry)
- **Viburnum edule** (highbush-cranberry)
- **Rosa acicularis** (prickly rose)
- subalpine fir
- hybrid white spruce

Herb Layer: 60% cover
- **Gymnocarpium dryopteris** (oak fern)
- **Cornus canadensis** (bunchberry)
- **Pyrola asarifolia** (rosy wintergreen)
- **Streptopus amplexifolius** (clasping twistedstalk)
- **Galium triflorum** (sweet-scented bedstraw)
- **Linnaea borealis** (twiningflower)
- **Rubus pubescens** (trailing raspberry)
- **Lycopodium annotinum** (stiff clubmoss)
- **Equisetum arvense** (common horsetail)
- **Aralia nudicaulis** (wild sarsaparilla)

Moss Layer: 75% cover
- **Hylocomium splendens** (step moss)
- **Ptilium crista-castrensis** (knight's plume)
- **Pleurozium schreberi** (red-stemmed feathermoss)
- **Mnium spp.** (leafy mosses)

SOIL AND SITE

- Moisture Regime: subhygric
- Nutrient Regime: medium - rich (-very rich)
- Slope Gradient (%): 0-50
  - * Slope Position: usually lower to toe but sometimes level
- Parent Material: variable
- Soil Texture: coarse to medium
- Coarse Fragments: 0-50
  - * Seepage Water: may be present below 50 cm
- Site Index:
  - Pl 34 (31-37)
  - Sx 26 (21-30)

COMMENTS: Nutrient-rich sites may have patchy cover of **Gymnocarpium dryopteris**.

DISTRIBUTION: uncommon and not large in area
SXW-OAK FERN (SBSmk2/05)

INTERPRETATIONS

Logging:  - clearcut

Site preparation:

Objective  - reduce debris; prepare planting spots; minimize future brush competition; improve planter access; increase soil temperature

Mechanical  - patch scarify; mound; plow

Prescribed fire  - medium broadcast burn* (remove L horizon); short burning windows will likely necessitate burning in the summer

Species choice:

Preferred  - Sx

Acceptable

Brush hazard:  - moderate to high (black twinberry, fireweed, aspen, thimbleberry)

- brush competition will require post-planting inspections of harvested sites, particularly if sites mechanically treated; these inspections may indicate the need for control of vegetation competition

- pre-harvesting control of aspen should be done at least 2 years prior to harvest

- aspen suckering can be a serious problem on these sites

Reforestation:  - vigorous stock should be planted immediately after site preparation

Concerns:  - windthrow

- root rot
Tree Layer: 20% cover
Hybrid white spruce

Shrub Layer: 30% cover
Cornus sericea (red-osier dogwood)
Rosa acicularis (prickly rose)
Viburnum edule (highbush cranberry)
Lonicera involucrata (black twinberry)
Ribes lacustre (black gooseberry)
subalpine fir

Herb Layer: 65% cover
Equisetum arvense (common horsetail)
Equisetum sylvaticum (wood horsetail)
Equisetum pratense (meadow horsetail)
Rubus pubescens (trailing raspberry)
Cornus canadensis (bunchberry)
Mertensia paniculata (tall bluebells)
Linnaea borealis (twinflower)
Petasites palmatus (palmetric coltsfoot)
Mitella nuda (common mitrewort)
Galium triflorum (sweet-scented bedstraw)
Gymnocarpium dryopteris (oak fern)
Calamagrostis canadensis (bluejoint)
Aralia nudicaulis (wild sarsaparilla)

Moss Layer: 90% cover
Hylocomium splendens (step moss)
Pleurozium schreberi (red-stemmed feathermoss)
Ptilium crista-castrensis (knight's plume)
Rhytidiadelphus triquetrus (electrified cat's-tail moss)

SOIL AND SITE

Moisture Regime: hygric
Nutrient Regime: medium - rich
* Slope Gradient (%): 0-5
* Slope Position: usually level
* Parent Material: usually fluvial
Soil Texture: medium to coarse
Humus Thickness (cm): 3-70
Coarse Fragments (%): 0-50
* Seepage Water: usually present at depths greater than 30 cm
Site Index: Sx 26 (20-32)

DISTRIBUTION: common but small in area, and generally on fluvial floodplains
SXW - HORSETAIL (SBSmk2/06)

INTERPRETATIONS

Logging:
- clearcut
- trafficability will be a problem on this site during the summer

Site preparation:
Objective
- reduce debris; prepare raised planting spots; minimize future brush competition; improve planter access; increase soil temperature

Mechanical
- mound*

Prescribed fire
- broadcast burn

Species choice:
Preferred
- Sx

Acceptable

Brush hazard:
- high to very high (black twinberry, fireweed, bluejoint, lady fern)
- brush competition will require post-planting inspections of harvested sites to determine the need for vegetation control

Reforestation:
- plant after water table drops below ground level and plant on drier microsites
- use large planting stock

Concerns:
- water table will likely rise above the ground surface in the spring causing seedling mortality
- flooding
- windthrow hazard is extreme
- herbicide use to control brush competition may conflict with wildlife needs
- this association is critical to the control of runoff and stream flow
FIGURE 3. Edatopic grid displaying site series in the SBSwk2 variant.
KEY TO SITE UNITS OF THE SBSwk2

1a Canopy composed almost exclusively of lodgepole pine or mixed lodgepole pine and black spruce, white spruce low cover (5%) or absent; upper slope or level

2a Black spruce present in canopy; soils generally not coarse textured; Cladina spp. (p. 55) low cover (<2%) or absent

2b Black spruce not present in canopy; soils coarse textured; Cladina spp. usually moderate to high cover (>5%)

1b Canopy composed partly or entirely of hybrid white spruce, occasionally in combination with lodgepole pine; slope position variable

3a Canopy usually lodgepole pine and hybrid white spruce; mid to upper slope; Gymnocarpium dryopteris (p. 26) low cover (<1%) or absent

3b Lodgepole pine usually absent from canopy; mid to lower slope or toe, or level, occasionally upper slope on north aspects; Gymnocarpium dryopteris moderate to high cover (5%)

4a Lower slope; Oplopanax horridus (p. 10) moderate to high cover (>10%)

4b Midslope to toe or level; Oplopanax horridus low cover (<5%) or absent

5a Usually toe of slope or level; seepage water often present; Equisetum spp. (p. 24) moderate to high cover (>10%)

5b Usually midslope, upper slope if north aspect, lower slope if south aspect; seepage water usually absent; Equisetum spp. low cover (<2%) or absent

Page numbers refer to the publication "Some Common Plants of the Sub-Boreal Spruce Zone" (Pojar et al. 1982).
SBSwk2/01

Sxw - OAK FERN

VEGETATION

Tree Layer: 25% cover
   Hybrid white spruce, subalpine fir

Shrub Layer: 30% cover
   Ribes lacustre (black gooseberry)
   Viburnum edule (highbush-cranberry)
   Vaccinium membranaceum (black huckleberry)
   Oplopanax horridus (devil's club)
   Alnus viridis ssp. sinuata (Sitka alder)
   [Rubus parviflorus (thimbleberry)]
   [Acer glabrum (Douglas maple)]
   subalpine fir

Herb Layer: 60% cover
   Gymnocarpium dryopteris (oak fern)
   Cornus canadensis (bunchberry)
   Orthilia secunda (one-sided wintergreen)
   Streptopus amplexifolius (clasping twistedstalk)
   Lycopodium annotinum (stiff clubmoss)
   Rubus pedatus (five-leaved bramble)
   Petasites palmatus (palmate coltsfoot)
   Smilacina racemosa (false Solomon's-seal)
   Linnaea borealis (twinflower)
   Tiarella trifoliata (three-leaved foamflower)

Moss Layer: 80% cover
   Pleurozium schreberi (red-stemmed feathermoss)
   Ptillium crista-castrensis (knight's plume)
   Hylocomium splendens (step moss)

SOIL AND SITE

Moisture Regime: (submesic-) mesic
Nutrient Regime: (poor-) medium (-rich)
Slope Gradient (%): 0-80 (rarely 0)
* Slope Position: mid; upper if northerly aspect
Parent Material: morainal, (glacio)fluvial
Soil Texture: coarse to moderately fine
Coarse Fragments (%): 0-60

DISTRIBUTION: common

Gymnocarpium dryopteris
INTERPRETATIONS

Logging: - clearcut (winter); layout and logging methods should facilitate burning

Site preparation:

Objective - reduce debris; prepare planting spots; minimize future brush competition; improve planter access; increase soil temperature

Mechanical - patch scarify; mix humus with mineral

Prescribed fire - broadcast burn* (remove L horizon)
- windrow and burn
- short burning windows will likely necessitate burning in the summer

Species choice:

Preferred - Pl, Sx

Acceptable -

Brush hazard: - high (aspen, fireweed, thimbleberry)
- post-planting inspections of harvested sites should be carried out to determine the need for vegetation control
- pre-harvesting control of aspen should be done at least 2 years prior to harvest
- aspen suckering can be a serious problem on these sites

Reforestation: - vigorous stock should be planted immediately after site preparation

Concerns: - root rot (if managing for Sx)
- windthrow
PI - HUCKLEBERRY - CLADINA

VEGETATION

Tree Layer: 40% cover
Lodgepole pine

Shrub Layer: 60% cover
Vaccinium membranaceum (black huckleberry)
Alnus viridis ssp. sinuata (Sitka alder)
subalpine fir
hybrid white spruce

Herb Layer: 15% cover
Cornus canadensis (bunchberry)
Orthilia secunda (one-sided wintergreen)
Pyrola chlorantha (green wintergreen)

V. membranaceum

Moss Layer: 95% cover
Pleurozium schreberi (red-stemmed feathermoss)
Cladina spp.
Peltigera aphthosa
Dicranum spp.
Barbilophozia spp.

SOIL AND SITE

Moisture Regime: subxeric
Nutrient Regime: poor
* Slope Gradient (%): 0-6 (usually 0)
* Slope Position: level or upper
* Parent Material: (glacio)fluvial
* Soil Texture: coarse
Coarse Fragments (%): 40-60

COMMENTS: Limited data for this site series.

DISTRIBUTION: uncommon
INTERPRETATIONS

Logging: - clearcut
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals

Site preparation:
Objective - enhance natural regeneration; improve moisture status; reduce debris; improve planter access
Mechanical - light drag scarify if logged in winter and cone crop survey indicates a good supply of seeds; disc trench; mix humus with mineral soil
Prescribed fire - do not burn

Species choice:
Preferred - PI
Acceptable

Brush hazard: - low

Reforestation: - conduct a PI cone survey to see. If cones are insufficient, plant PI stock.

Concerns: - mistletoe
- drought
**Sxw - HUCKLEBERRY - HIGHBUSH-CRANBERRY**

**VEGETATION**

Tree Layer: 30% cover

Lodgepole pine, hybrid white spruce

Shrub Layer: 50% cover

- *Vaccinium membranaceum* (black huckleberry)
- *Viburnum edule* (highbush-cranberry)
- *Spiraea betulifolia* (birch-leaved spirea)
- *Alnus viridis ssp. sinuata* (Sitka alder)
- *Ribes lacustre* (black gooseberry)
- *Sorbus scopulina* (western mountain-ash)

Herb Layer: 60% cover

- *V. membranaceum* (bunchberry)
- *Cornus canadensis* (one-sided wintergreen)
- *Lycopodium annotinum* (stiff clubmoss)
- *Rubus pedatus* (five-leaved bramble)
- *Linnaea borealis* (twinflower)
- *Smilacina racemosa* (false Solomon’s-seal)
- *Pyrola chlorantha* (green wintergreen)
- *Arnica cordifolia* (heart-leaved arnica)

Moss Layer: 95% cover

- *Pleurozium schreberi* (red-stemmed feathermoss)
- *Ptilium crista-castrensis* (knight’s plume)

**SOIL AND SITE**

- Moisture Regime: submesic
- Nutrient Regime: poor - medium
- Slope Gradient (%): 0-75
- * Slope Position: mid to upper; or level
- Parent Material: glaciofluvial, morainal, colluvial
- * Soil Texture: moderately coarse to coarse
- Coarse Fragments (%): 0-60

**DISTRIBUTION:** common
INTERPRETATIONS

Logging: - clearcut

Site preparation:
  Objective - reduce debris; prepare planting spots; minimize future brush competition; improve planter access
  Mechanical - patch scarify; disc trench; mix humus with mineral
  Prescribed fire - broadcast burn (remove L horizon)
  - avoid burning sites with a thin humus layer (less than 6 cm)

Species choice:
  Preferred - Pl, Sx
  Acceptable

Brush hazard:
  - moderate (fireweed, trembling aspen)
  - pre-harvesting control of aspen should be done at least 2 years prior to harvest
  - aspen suckering can be a serious problem on these sites
  - moderate brush competition will likely occur within 3 years of harvesting; an inspection at 3 years will indicate if any further treatment is required

Reforestation:

Concerns:
  - drought
**SBSwk2/04**

**Sb - HUCKLEBERRY - CLUBMOSS**

**VEGETATION**

Tree Layer: 25% cover  
Hybrid white spruce, lodgepole pine, black spruce

Shrub Layer: 50% cover  
- Rosa acicularis  
- Vaccinium membranaceum  
- Viburnum edule  
- Alnus viridis ssp. sinuata  
- Ribes lacustre  
- Sorbus scopulina  
- Ledum groenlandicum  
- subalpine fir  
- hybrid white spruce  
- black spruce

Herb Layer: 45% cover  
- Cornus canadensis  
- Linnaea borealis  
- Equisetum scirpoides  
- Orthilia secunda  
- Epilobium angustifolium  
- Lycopodium annotinum  
- Mitella nuda  
- Gymnocarpium dryopteris  
- Rubus pubescens  
- Petasites palus  
- Rubus pedatus

Moss Layer: 60% cover  
- Ptilium crista-castrensis  
- Pleurozium schreberi  
- Peltigera aphthosa

**SOIL AND SITE**

- Moisture Regime: submesic - subhygric
- Nutrient Regime: poor - medium
- Aspect: northerly or flat
- *Slope Gradient (%): usually less than 25
- Slope Position: mid to upper or level
- Parent Material: glacio(fluvial) or morainal
- Soil Texture: moderately fine to coarse
- Coarse Fragments (%): 0-85
- Site Index: PI 22
- Sx 22 (19-26)

**COMMENTS:** Often associated with compact soils.

**DISTRIBUTION:** common in some areas
SB-HUCKLEBERRY-CLUBMOSS (SBSwk2/04)

INTERPRETATIONS

Logging:
- clearcut
- full tree harvesting may seriously reduce cones on a site; good cone distribution must be ensured if managing for naturals
- only harvest in the winter or dry part of summer

Site preparation:
Objective
- enhance natural regeneration; reduce debris; improve planter access

Mechanical
- light drag scarify*; mix humus with mineral soil; spot mounding

Prescribed fire
- light broadcast burn (remove L horizon)

Species choice:
Preferred - PI
Acceptable - Sx

Brush hazard:
- low to moderate (trembling aspen, fireweed)
- brush competition will likely occur within 3 years of harvesting; sites should be inspected at 3 years to determine if any further treatment is required

Reforestation:
Concerns:
- compact till
- windthrow
- perched water table; a slightly raised microsite may improve growth on areas which are subhygric
- mistletoe, gall rust (if managing for PI)
- root rot (if managing for Sx)
- trafficability problems
SxBwk2/05

Sxw - DEVIL'S CLUB

VEGETATION

Tree Layer: 15% cover
Hybrid white spruce, subalpine fir

Shrub Layer: 75% cover
Oplopanax horridus (devil’s club)
Rubus parviflorus (thimbleberry)
Ribes lacustre (black gooseberry)

Herb Layer: 80% cover
Gymnocarpium dryopteris (oak fern)
Rubus pedatus (five-leaved bramble)
Tiarella trifoliata (three-leaved foamflower)
Clintonia uniflora (queen’s cup)
Osmorhiza chilensis (sweet-cicely)
Lycopodium annotinum (stiff clubmoss)
Smilacina racemosa (false Solomon’s-seal)
Rubus pubescens (trailing raspberry)

Moss Layer: 70% cover
Ptilium crista-castrensis (knight’s plume)
Pleurozium schreberi (red-stemmed feathermoss)
Mnium spp. (leafy mosses)

SOIL AND SITE

Moisture Regime: (mesic) - subhygric
Nutrient Regime: medium - rich
Slope Gradient (%): 5-35
Slope Position: lower
Parent Material: variable
Soil Texture: variable
Coarse Fragments (%): 9-80
Seepage Water: may be present

DISTRIBUTION: common
SXW - DEVIL’S CLUB (SBSwk2/05)

INTERPRETATIONS

Logging:  
- clearcut (winter); layout and logging methods should facilitate burning  
- inspect the site to determine if there is a fine textured soil, in which case the use of low ground pressure vehicles to prevent compaction is recommended

Site preparation:

Objective  
- reduce debris; prepare planting spots; minimize future brush competition; improve planter access; increase soil temperature

Mechanical  
- patch scarify; mound; plow

Prescribed fire  
- broadcast burn*  
- short burning windows will likely necessitate burning in the summer

Species choice:

Preferred  
- Sx

Acceptable  

Brush hazard:

- very high (fireweed, thimbleberry)
- post-planting inspections of harvested sites should be carried out to determine the need for vegetation control
- pre-harvesting control of aspen should be done at least 2 years prior to harvest

Reforestation:

- large vigorous stock should be planted immediately after site preparation

Concerns:

- windthrow
- root rot
SBSwk2/06

**Sxw - HORSETAIL**

**VEGETATION**

Tree Layer: 15% cover
Hybrid white spruce, subalpine fir

Shrub Layer: 25% cover
- Ribes lacustre (black gooseberry)
- Lonicera involucrata (black twinberry)
- Viburnum edule (highbush-cranberry)
- Cornus sericea (red-osier dogwood)
- Rosa acicularis (prickly rose)

Herb Layer: 75% cover
- Equisetum arvense (common horsetail)
- Equisetum pratense (meadow horsetail)
- Cornus canadensis (bunchberry)
- Rubus pubescens (trailing raspberry)
- Linnaea borealis (twinflower)
- Mitella nuda (common mitrewort)
- Gymnocarpium dryopteris (oak fern)
- Mertensia paniculata (tall bluebells)
- Galium triflorum (sweet-scented bedstraw)
- Streptopus amplexifolius (clasping twistedstalk)
- Smilacina racemosa (false Solomon's-seal)
- Heracleum sphondylium (cow-parsnip)
- Rubus pedatus (five-leaved bramble)
- Aconitum delphiniifolium (mountain monkshood)
- Aralia nudicaulis (wild sarsaparilla)

Moss Layer: 50% cover
- Hylocomium splendens (step moss)
- Mnium spp. (leafy mosses)
- Ptilium cristacastrensis, Pleurozium schreberi (red-stemmed feathermoss)

**SOIL AND SITE**

Moisture Regime: (subhygic) - hygric
Nutrient Regime: medium to rich
Slope Gradient (%): 0-6
Slope Position: (lower) - toe or level
Parent Material: (glacio)fluvial
Soil Texture: medium to moderately coarse
Coarse Fragments (%): 0-56
Seepage Water: often present

**DISTRIBUTION:**
- uncommon west of the Rocky Mountains;
- common east of the Rocky Mountains
sxw - horsetail (sbswk2/06)

interpretations

logging:  
- clearcut

site preparation:

objective  
- reduce debris; prepare raised planting spots; minimize future brush competition; improve planter access; increase soil temperature

mechanical  
- mound*  
- trafficability will be a problem on this site during the summer

prescribed fire  
- broadcast burn

species choice:

preferred  
- sx

acceptable

brush hazard:  
- very high (black twinberry, fireweed, willows, bluejoint)
- post-planting inspections of harvested sites should be carried out to determine the need for vegetation control

reforestation:

- plant after water table drops below ground level and plant on drier microsites
- use large vigorous planting stock

concerns:

- this association is critical to the control of runoff and stream flow
- herbicide use to control brush competition may conflict with fish and wildlife needs
- windthrow
- root rot
- compaction
- high water table; water table will likely rise above the ground surface in the spring causing seedling mortality
THE SBSwk3 VARIANT

SBSwk3  Takla SBSwk

Soil Nutrient Regime

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xeric</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>subxeric</td>
<td>03</td>
<td>04</td>
<td>06</td>
<td>07</td>
</tr>
<tr>
<td>3</td>
<td>submesic</td>
<td>02</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>mesic</td>
<td>01</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>subhygric</td>
<td>04</td>
<td>06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>hygric</td>
<td>03</td>
<td>04</td>
<td>06</td>
<td>07</td>
</tr>
<tr>
<td>7</td>
<td>subhydric</td>
<td>02</td>
<td>04</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

Site Series

01 Sxw - Oak fern
02 SxwFd - Purple peavine
03 Sxw - Huckleberry - Highbush-cranberry
04 Sb - Labrador tea
05 Sxw - Twinberry - Coltsfoot
06 Sxw - Devil's club
07 Sxw - Horsetail

FIGURE 4. Edatopic grid displaying site series in the SBSwk3 variant.
KEY TO SITE UNITS OF THE SBSwk3

1a Canopy dominated by Douglas-fir; *Amelanchier alnifolia* (p. 7) present; slope position upper or level

SBSwk3/02

1b Canopy dominated by other species; *Amelanchier alnifolia* absent; slope position variable

2a Canopy dominated by a combination of lodgepole pine and black spruce; slope gradient less than 10%, often 0 (i.e., flat); *Aulacomnium palustre* (p. 58) present

SBSwk3/04

2b Canopy dominated by hybrid white spruce, sometimes in combination with lodgepole pine; slope gradient variable; *Aulacomnium palustre* usually absent

3a Level or depression; parent material fluvial or lacustrine; *Equisetum* spp. (p. 24) abundant (usually >30% cover)

SBSwk3/07

3b Slope position variable; parent material variable; *Equisetum* spp. low cover (2%) or absent

4a Slope position mid to lower (occasionally upper on north aspects); *Oplopanax horridus* (p. 10) abundant (usually >15% cover)

SBSwk3/06

4b Slope position variable; *Oplopanax horridus* low cover (<3%) or absent

5a *Gymnocarpium dryopteris* (p. 26) moderate to high cover (usually >5%)

SBSwk3/01

5b *Gymnocarpium dryopteris* low cover (usually <2%) or absent

---

Page numbers refer to the publication "Some Common Plants of the Sub-Boreal Spruce Zone" (Pojar et al. 1982).
6a Usually mid to upper slope; lodgepole pine usually present in the canopy; *Rubus pubescens* (p. 18) usually very low cover (1%) or absent

SBSwk3/03

6b Usually mid to lower slope; lodgepole pine usually absent from the canopy; *Rubus pubescens* usually low to moderate cover (>1%)

SBSwk3/05