Handbook for Timber and Mule Deer Management Co-ordination on Winter Ranges in the Cariboo Forest Region

by
H.M. Armleder¹, R.J. Dawson¹, and R.N. Thomson²

1 B.C. Ministry of Forests
Research Branch
540 Borland Street
Williams Lake, B.C.
V2G 1R8

2 Formerly with
Ministry of Forests

August 1986
ACKNOWLEDGEMENTS

Appreciation is expressed to members of the Interior Mule Deer — Timber Research Committee: K. Balaski, M. Carlson, R. Ellis, B. Jenkins, F. Russell, A. Vyse, and H. Yano. B.C. Ministry of Forests; and M. Beets, D. Eastman, D. Hebert, H. Langin, and D. Low. B.C. Ministry of Environment, for their advice and review of the manuscript.

Thanks are also due to R. Page, B.C. Ministry of Forests, for providing data analyses advice; P. Nystedt, B.C. Ministry of Forests, and S. Salkeld, for producing the illustrations; and T. Mock, B.C. Ministry of Forests, for preparing the manuscript for publication. T. Richardson, Aprotek Design, assisted in the development of the organization of the handbook.

Finally, this guide would not have been possible without the field staff: P. Belliveau, S. Walker, M. Minchau, E. Fickell, and F. Sheran, B.C. Ministry of Forests, who aided in collecting the data on which much of the handbook is based.

Canadian Cataloguing in Publication Data

Armleder, H.M.
Handbook for timber and mule deer management co-ordination on winter ranges in the Cariboo Forest Region

(Land management handbook. ISSN 0229-1622; no. 13)

Includes index.
ISBN 0-7718-8525-3

SD146.B7A75 1986 333.75'15'09711 C86-092145-X

©1986 Province of British Columbia
Published by the Ministry of Forests Parliament Buildings Victoria, B.C. V8W 3E7
(reprinted July 1991)
Copies of this and other Ministry of Forests titles are available from Crown Publications Inc., 521 Fort Street, Victoria, B.C. V8W 1E7.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURPOSE OF THE HANDBOOK</td>
<td>iv</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>v</td>
</tr>
<tr>
<td>USER’S GUIDE</td>
<td>vi</td>
</tr>
<tr>
<td>WHEN THE HANDBOOK CAN BE USED</td>
<td>viii</td>
</tr>
<tr>
<td>PART I: ECOLOGICAL AND MANAGEMENT</td>
<td>1</td>
</tr>
<tr>
<td>PRINCIPLES FOR WINTER RANGE</td>
<td></td>
</tr>
<tr>
<td>DETAILED TABLE OF CONTENT</td>
<td>3</td>
</tr>
<tr>
<td>ECOLOGICAL PRINCIPLES FOR WINTER RANGE</td>
<td>4</td>
</tr>
<tr>
<td>WHAT IS WINTER RANGE?</td>
<td>4</td>
</tr>
<tr>
<td>WHY IS WINTER RANGE REQUIRED?</td>
<td>6</td>
</tr>
<tr>
<td>HOW DOES WINTER RANGE FUNCTION?</td>
<td>8</td>
</tr>
<tr>
<td>FOREST MANAGEMENT PRINCIPLES FOR WINTER RANGE</td>
<td>34</td>
</tr>
<tr>
<td>SUMMARY OF PART I</td>
<td>42</td>
</tr>
<tr>
<td>PART II: MANAGING AND OPERATING ON WINTER RANGE</td>
<td>45</td>
</tr>
<tr>
<td>DETAILED TABLE OF CONTENT</td>
<td>47</td>
</tr>
<tr>
<td>LOCATING WINTER RANGE</td>
<td>48</td>
</tr>
<tr>
<td>EVALUATING WINTER RANGE</td>
<td>56</td>
</tr>
<tr>
<td>DETERMINING MANAGEMENT PRESCRIPTIONS FOR WINTER RANGE</td>
<td>78</td>
</tr>
<tr>
<td>HARVESTING AND SPACING ON WINTER RANGE</td>
<td>86</td>
</tr>
<tr>
<td>INDEX</td>
<td>97</td>
</tr>
<tr>
<td>WE WELCOME YOUR COMMENTS</td>
<td>98</td>
</tr>
</tbody>
</table>
PURPOSE OF THE HANDBOOK

This handbook is a field guide. It provides forest and wildlife managers with the information necessary to co-ordinate mule deer and timber management on deer winter range in the Cariboo Forest Region.

It is not meant to be used as the sole determinant of whether logging should take place on a particular winter range: resource managers must make those decisions considering also regional objectives and priorities. It is, however, intended to aid managers in weighing the options for winter range management. If a decision has been made to harvest, the handbook describes how it should be done and includes detailed instructions for the logging contractor.
BACKGROUND

Douglas-fir is an important component of the timber supply in the Cariboo Forest Region. A significant amount of the Douglas-fir is also an important component of mule deer winter range. This situation has led to resource allocation problems: Should trees growing on winter range be reserved for mule deer and the benefits that stem from wildlife management? Or, should the Douglas-fir be harvested for timber values? Are compromises possible?

The B.C. Ministry of Forests and Ministry of Environment are working co-operatively to find ways to meet both timber and wildlife management objectives in the Cariboo Region. One part of this co-operative effort is a study of mule deer habitat relationships, funded by the Ministry of Forests and supported by the Ministry of Environment. This handbook is one important output from the study.

BREAKDOWN OF THE GROSS MERCHANTABLE TIMBER VOLUME IN THE CARIBOO FOREST REGION
The targeted users for this handbook range from managers to technicians and contractors. It will aid managers to develop co-ordinated resource plans for winter ranges in consultation with other resource professionals. Technicians will find it useful for field assessments and inspections of logging operations. Contractors will get a clear picture of how to log and space on winter ranges.

The handbook was designed and written with the users in mind. Printed on durable water-proof paper, it is intended for both field and office use. The text is cross-referenced so the reader can locate related information quickly. An index is provided to help find specifics (see p. 97).

Structure

The handbook is divided into two parts. Part I provides the background: the ecological and forest management principles applicable to winter range. Part II describes a “how to” procedure for applying the principles covered in Part I in management and operations.
PART I: ECOLOGICAL AND MANAGEMENT
PRINCIPLES FOR WINTER RANGE

ECOLOGICAL PRINCIPLES Page 4

FOREST MANAGEMENT PRINCIPLES Page 34

PART II: MANAGING AND OPERATING
ON WINTER RANGE

LOCATING WINTER RANGE Page 48

EVALUATING WINTER RANGE Page 56

DETERMINING MANAGEMENT PRESCRIPTIONS Page 78

HARVESTING AND SPACING Page 86
WHEN TO USE THE HANDBOOK

<table>
<thead>
<tr>
<th>FOR</th>
<th>EXAMPLE USES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND</td>
<td>Background knowledge for:</td>
</tr>
<tr>
<td></td>
<td>• senior managers</td>
</tr>
<tr>
<td></td>
<td>• foresters</td>
</tr>
<tr>
<td></td>
<td>• forest and wildlife technicians</td>
</tr>
<tr>
<td></td>
<td>• contractors</td>
</tr>
<tr>
<td>PLANNING</td>
<td>Input to:</td>
</tr>
<tr>
<td></td>
<td>• co-ordinated resource management plans</td>
</tr>
<tr>
<td></td>
<td>• local resource use plans</td>
</tr>
<tr>
<td></td>
<td>• management and working plans</td>
</tr>
<tr>
<td></td>
<td>• development plans</td>
</tr>
<tr>
<td></td>
<td>• cutting plans</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>Operating instructions for:</td>
</tr>
<tr>
<td></td>
<td>• logging contractors</td>
</tr>
<tr>
<td></td>
<td>• fellers, skidder operators</td>
</tr>
<tr>
<td></td>
<td>• spacing contractors</td>
</tr>
<tr>
<td></td>
<td>• woodlot licensees</td>
</tr>
</tbody>
</table>
EXAMPLE QUESTIONS

PART I

• What is the definition of winter range?
• What do deer need on winter range?
• Can winter ranges be heavily cut?

ECOLOGICAL PRINCIPLES Page 4

FOREST MANAGEMENT PRINCIPLES Page 34

PART II

• Do fish and wildlife people have input?
• Is a harvest proposal likely to be approved on this winter range?
• What stand-specific prescriptions might be submitted for approval?
• Which trees should the faller cut?
• How careful should the logging crew be?
• Does juvenile spacing need to be done differently on winter range?

LOCATING WINTER RANGE Page 48

EVALUATING WINTER RANGE Page 56

DETERMINING MANAGEMENT PRESCRIPTIONS Page 78

HARVESTING AND SPACING Page 86
PART I

ECOLOGICAL AND MANAGEMENT PRINCIPLES FOR WINTER RANGE
PART I

This part of the handbook describes the ecological and forestry principles applicable to mule deer and winter range. It provides the basis for understanding how to manage winter range — the subject of Part II. With the principles of Part I in mind the manager can tailor his use of the handbook to meet the needs of specific situations.

Part I answers key questions: What is winter range? Why is winter range required? How does winter range function? Additionally, it reviews the forest management principles applicable to winter range.
DETAILED TABLE OF CONTENTS

ECOLOGICAL PRINCIPLES FOR WINTER RANGE
WHAT IS WINTER RANGE? 4
WHY IS WINTER RANGE REQUIRED? 6
HOW DOES WINTER RANGE FUNCTION? 8
Deer Condition in Winter 10
Snow 11
Topographic Factors 12
Slope 12
Aspect 13
Vegetative Factors 14
Shelter 14
Snow Interception Cover 14
Thermal Cover 16
Security Cover 17
Forage 18
Ground Forage 18
Litterfall 19
Diversity and Edge 20
Vertical Diversity 20
Edge and Horizontal Diversity 21
Micro-Habitat 22
Habitat Types 24
Spatial Arrangement of Habitat Types 26
Snowpack Zones 28
Snowpack Alters Habitat Proportions 30
Features of a Prime Mule Deer Winter Range 32
FOREST MANAGEMENT PRINCIPLES FOR WINTER RANGE 34
Selective Harvesting 34
Selectively Harvesting “Dry-Belt” Douglas-fir 36
Selectively Harvesting “Transition-Belt” Douglas-fir 38
Silvicultural Treatments 40
SUMMARY OF PART I 42
ECOLOGICAL PRINCIPLES FOR WINTER RANGE

WHAT IS WINTER RANGE?

Winter range as described in this handbook is not simply an area occupied by mule deer under any winter condition. In the mildest winters, with little snow accumulation, mule deer will occupy a variety of habitats over a large area (1). Conversely, in the severest of winters, with deep snow accumulation, deer will concentrate on small areas that provide the best protection from these conditions (2).

In the past, terms such as “critical”, “important”, and “not so important”, have been used to describe ranges that deer occupy during various types of winters. These terms are not used in this handbook because, for example, having suitable habitat for average winters is as important as having suitable habitat for the severest winters. Nevertheless, the designations can be useful for ranking winter ranges comparatively to one another.

Winter range, as discussed in this handbook, is defined as an area that provides the resources deer would use during all but the mildest of winter conditions (3). The physical criteria generally used to identify winter range include:

• general SE, S, SW, or W aspect (the exceptions include large river valleys)
• gentle to moderate slope (10-45%)
• elevation below 1500 metres in shallow and moderate snowpack zones and below 1000 metres in the deep snowpack zone (see p. 28)
• Douglas-fir as the predominant tree species (mature and over-mature trees present)

The principles used to define winter range boundaries are explained on pages 50-53.
1 Area used by deer in the mildest winters

2 Area used by deer in the severest winters

3 Winter range
WHY IS WINTER RANGE REQUIRED?

A deer’s physical condition helps determine whether or not it survives and reproduces. Condition is usually described in terms of fat reserves, with adequate reserves equated with good condition. Condition changes throughout the year, influenced largely by the quality and quantity of seasonal ranges and weather conditions. During the annual cycle:

1. Deer reach their best condition during the summer and fall with abundant, high quality feed.

2. If the summer and fall range conditions are good, deer enter winter in good shape with adequate fat reserves.

3. If summer and/or fall range conditions are inadequate, deer enter winter with reduced fat reserves.

4. All deer lose some body weight during winter, even if winter range conditions provide adequate food and shelter.

5. Deer can quickly lose weight and die if winter range is scarce or of poor quality. Even if winter range conditions are good, deer will die in moderate or severe winters if their condition at the start of winter is inadequate.

6. Available, good quality spring range can quickly boost animal condition.

7. Deer weakened throughout winter often die in March or April if spring range is unavailable or of poor quality.

Winter, therefore, is the most critical season for deer. During winter deer must cope with the worst environmental conditions while consuming the poorest quality food. This makes good quality winter range essential for their survival and productivity.
SEASONAL CHANGES IN CONDITION

Summer Fall Winter Spring

1 2 3 6 4 5 7

Deer Condition

Good

Body Weight

Low

High

1 2 3 4 5 6 7
HOW DOES WINTER RANGE FUNCTION?

Condition is largely a reflection of an animal’s ability to maintain its energy balance. If energy losses exceed gains over an extended period, then condition will suffer, deer will fail to successfully reproduce, and eventually will die. Food provides deer with energy (calories), and the warmth provided by sunshine means fewer calories are used up to maintain a constant body temperature. Increased movement by an animal and exposure to colder temperatures and greater wind result in more calories being used up to keep warm.

Suitable winter range helps deer maintain their energy balance by slowing their rate of weight loss during winter, and improving their chances for survival until spring and summer when food and the environment are better. During winter, deer try to maintain their energy balance by using areas with:

A. Shallow Snow
B. Adequate Food
C. Sufficient Shelter

Winter range must provide these areas. They will be discussed over the following pages.
SUMMER RANGE
• energy gains exceed losses

GOOD WINTER RANGE
• energy losses slightly exceed gains

POOR WINTER RANGE
• energy losses greatly exceed gains
DEER CONDITION IN WINTER

The condition of mule deer on winter range (largely reflected by the state of their energy balance) is influenced by numerous factors. For example, the depth of snow with which deer must contend is influenced by the slope of the land, the aspect, and the type and degree of crown closure afforded by the trees. The deeper the snow, the more energy deer must expend to move, and consequently the greater the impact on their condition.

The relationship among the various factors influencing mule deer on winter range is illustrated below and will be discussed individually on the following pages. Arrows represent influences.
Snow

Snow depth affects ease of movement and forage availability. As snow depth increases, so does the energy required to move through it. More fat reserves are used up when deer are travelling through deep snow, than through shallow snow. These reserves cannot be replaced during winter. Movement through dense snow requires more energy expenditure than travel through light fluffy snow.

Moderate to deep snow also buries much food, making it unavailable. Condition of deer deteriorates if alternative food in low snow habitats is not available.

RELATIVE INCREASE IN ENERGY EXPENDITURE FOR MOVEMENT THROUGH SNOW AS COMPARED TO MOVEMENT WITH NO SNOW

GROUND FORAGE BECOMES INCREASINGLY UNAVAILABLE AS SNOW DEPTH INCREASES
Topographic Factors

Slope and aspect are important topographic factors on mule deer winter range because they affect snow characteristics, site temperature, and stand development.

Slope and aspect must be viewed at two levels: 1) the winter range as a whole; and 2) topography within the winter range. Winter ranges as a whole are typically on west to southeast aspects and have gentle to moderate slopes (10-45%). In some large valleys such as the Fraser and Chilcotin river valleys, other aspects are used because of the moderating effect the valley has on the local climate.

Within a winter range all aspects and slopes are valuable. For example, while northeast aspects often produce stands with the highest crown closure, which intercepts the most snow, on south aspects snow depths are quickly reduced. Slopes within a winter range may vary from near vertical cliffs to flat areas.

Slope

Snow depths are shallower on slopes than on flat areas because the same amount of snow is distributed over a greater area. For example, a 50% slope produces an 11% shallower snow depth. Because slopes and ridges are often more exposed to wind and sunlight, snow depths are further reduced, making movement easier for deer.

INFLUENCE OF SLOPE ON SNOW DEPTH

![Diagram showing influence of slope on snow depth]
Aspect

Aspect influences snow depth as well as the daytime temperatures experienced by deer. During the day, south slopes are warmer than north slopes because they receive more direct sunlight. Besides helping animals to stay warmer on sunny days, direct sunlight often causes snow to melt on south slopes, making travel easier for deer.

As the snowpack deepens, optimal slopes and aspects become more important. Therefore, in high snowpack zones moderately steep slopes (35-55%) on southeast to west aspects are especially important on winter ranges.

Conversely, site conditions on steep south slopes often produce stands that are more open than those produced on cooler aspects (NW, N, NE). This makes these latter aspects valuable within winter ranges, especially when higher snow interception ability is required (e.g., immediately after major snowfalls and before the sun can reduce snow depths on south aspects).

INFLUENCE OF ASPECT

<table>
<thead>
<tr>
<th>NORTH</th>
<th>SOUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>• little or no direct sunlight during winter</td>
<td>• more direct sunlight</td>
</tr>
<tr>
<td>• typically denser stand</td>
<td>• typically more open stand</td>
</tr>
</tbody>
</table>

ASPECT INFLUENCES

• site temperature
• stand density
• snow conditions
Vegetative Factors

Vegetative factors influencing mule deer condition on winter range can be organized into two broad categories: 1) those that provide some form of shelter, and 2) those that provide forage.

Shelter

Three types of shelter are required by mule deer on any winter range: 1) Snow Interception Cover, 2) Thermal Cover, and 3) Security Cover. Topographic and vegetative factors in combination often provide necessary forms of shelter.

Snow Interception Cover

Tree crowns can intercept considerable amounts of snow, making it easier for deer to move about and find food. The size, shape, crown closure, and species of tree crowns influence their ability to intercept snow. Wide, deep tree crowns intercept more snow than do thin, narrow crowns. Interlocking canopies have high crown closure that intercepts the most snow. Douglas-fir is more effective than lodgepole pine at intercepting snow.
SNOW INTERCEPTION ABILITY

Individual Trees

Short, narrow crowns intercept little snow

Deep, wide crowns intercept more snow

Stands

Widely spaced crowns intercept little snow

Interlocking crowns intercept the most snow
Thermal Cover

Cover used by deer to assist them in maintaining a constant body temperature is called thermal cover. Thermal cover is provided by trees and, to a lesser degree, topography. The forest canopy acts as a shield by reducing the animals' radiational heat loss to the open sky, especially at night.

STAND STRUCTURE INFLUENCES THERMAL COVER

<table>
<thead>
<tr>
<th>Poor</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-layered stands provide poor thermal cover</td>
<td>Multi-layered stands provide the best thermal cover</td>
</tr>
</tbody>
</table>

Trees, shrubs, and topography reduce air movement, thereby protecting deer from the chill factor associated with low temperature and increasing windspeed. This slows the deterioration of animal condition.

TOPOGRAPHY AND VEGETATION PROTECT DEER FROM WIND
Security Cover

Cover used by deer to conceal themselves is called security cover. Harassment from humans, their machines, and other animals causes deer to run and hide, thus expending energy already in short supply. Security cover cuts this energy expenditure by reducing the need and the distance to flee.

As with thermal cover, vegetation and topography combine to produce security cover. Good thermal cover will provide adequate security cover.

Security cover is especially important along roads to reduce harassment.
Forage

While the vegetative factors just described deal primarily with ways of minimizing energy losses, forage provides an energy gain. Mule deer use two broad categories of forage: 1) ground forage and 2) litterfall. Ground forage consists of rooted material that is available unless it is buried or inaccessible because of snow. Litterfall is food from the canopy, made available primarily by wind or snow action.

Ground Forage

Ground forage for mule deer on winter range consists of shrubs (predominantly saskatoon, mahonia, sagebrush, Douglas maple, red osier dogwood, wild rose, willow), grasses, and forbs. Shrubs are the preferred and most nutritious winter forage. Shrubs are more abundant in open areas, yet are often unavailable because of deep snow.

SHRUBS ARE OFTEN UNAVAILABLE BECAUSE OF SNOW BURIAL
Litterfall

Litterfall consists of twigs and branches of Douglas-fir and arboreal lichens (i.e., lichens living on trees). Although lichens are a significant food item where they occur, Douglas-fir is the most common food item in the winter diet of mule deer.

Not all Douglas-fir foliage is equally valuable deer forage. Foliage from the crowns of old trees is better quality forage than the foliage of young trees. Also, old trees are important because their brittle branches frequently break off during winter storms, providing food for deer.

QUALITY OF DOUGLAS-FIR FORAGE IS NOT UNIFORM
Diversity and Edge

All the components discussed to this point must be present on a winter range. However, how they are distributed across a winter range is important too. Suitable diversity can provide both cover and forage requirements while edge makes them available in close proximity.

Vertical Diversity

Vertical diversity, created by a multi-layered stand, is important on winter range. For example, although a stand with closed interlocking crowns intercepts snow very efficiently, it allows little light to reach the forest floor and thus makes ground forage scarce. Managers should promote a multi-layered, uneven-aged stand structure with sufficient crown closure for snow interception and litterfall during moderate and severe winters.
Edge and Horizontal Diversity

A mix of habitat types produces horizontal diversity. It is important for deer to have the resources offered by different habitats in close proximity. For example, as snow melts, deer make the most use of spring range that is adjacent to a habitat offering good security cover.

As well, deer use the edge between such habitats because it contains many resources found in both. Edge can provide cover and ground forage in close proximity — a valuable survival factor.

EDGE PROVIDES MANY RESOURCES IN CLOSE PROXIMITY

- Snow Interception, Security, and Thermal Cover
- Ground Forage
- Winter Range
- Spring Range
- EDGE
Micro-Habitat

Much of the foregoing material is now assembled and portrayed in three dimensions to illustrate how the factors come together on a micro-habitat basis. Any stand or broad habitat type is composed of numerous micro-habitats, each of different value to deer. Some of these are illustrated on the facing page and are explained below.

1. Mule deer make extensive use of ridges and knolls that have mature and over-mature Douglas-fir. These micro-habitats provide both cover and litterfall forage. Even when the surrounding area provides poor quality winter habitat, ridges and knolls are often used by deer.

2. Gully bottoms and other moisture-receiving sites typically receive less use in the moderate and high snowpack zones (p. 28). In the low snowpack zone these micro-habitats are valuable to deer because they often provide corridors of high crown closure through otherwise open habitat and provide a source of more abundant ground forage, especially if crown closure is reduced.

3. Topographic breaks or edges are extensively used as travel routes, especially if they have suitable crown closure and security cover.

4. Dense clumps of regeneration within a stand typically receive little use. Ground forage is almost nonexistent under the shade of these clumps and their density often makes travel difficult. Deer use these micro-habitats if they offer the only cover within an area that has been heavily logged.

5. Openings within a stand may have abundant ground forage but receive less use as snow depths increase. Deer make little use of openings when they sink into 50 centimetres or more of snow.

6. Patches of mature Douglas-fir with interlocking crowns are very efficient at intercepting snow. Deer use these patches far more than micro-habitats that contain solitary trees.
Habitat Types

Besides having suitable micro-habitats, on a larger scale each mule deer winter range must have basic types of winter habitat, regardless of the snowpack zone (p. 28) in which it occurs. The differences among these basic habitat types can most easily be described by the amount of crown closure they offer and hence the amount they reduce snow depth. Therefore, the basic habitat types are labelled: Low Crown Closure Habitat, Moderate Crown Closure Habitat, and High Crown Closure Habitat.

<table>
<thead>
<tr>
<th>HABITAT TYPES</th>
<th>PERCENT CROWN CLOSURE</th>
<th>CROWN CLOSURE CLASS CODES (from new series forest cover maps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW CROWN CLOSURE HABITAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• some dominants</td>
<td>16-35</td>
<td>2,3</td>
</tr>
<tr>
<td>• some intermediates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• some regeneration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODERATE CROWN CLOSURE HABITAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• all size and age classes</td>
<td>36-65</td>
<td>4,5,6</td>
</tr>
<tr>
<td>• well represented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH CROWN CLOSURE HABITAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dense canopy of co-dominants</td>
<td>> 65</td>
<td>> 6</td>
</tr>
<tr>
<td>• some intermediates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• some regeneration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Crown closure is not the sole determinant of winter range habitat value. For example, a stand with high crown closure, made up of 25-year-old trees, 6 metres in height, can not provide the litterfall forage or snow interception as can a stand of the same crown closure, made up of 200-year-old trees, 35 metres in height. Therefore, it is important to note that when reference is made to crown closure in this handbook, only trees greater than 10.4 metres in height are included (HEIGHT CLASS CODE > 1 on Forest Cover Maps produced by the Ministry of Forests). Also, habitat types on mule deer winter range are most valuable if older age classes predominate (AGE CLASS CODES > 6).
Spatial Arrangement of Habitat Types

A diversity of habitat types is essential on any winter range because each habitat offers different combinations of food and shelter. For example, during winters or winter periods when snow depths are shallow most deer use areas with little crown closure in which ground forage is abundant. When snow is deep the energy costs of moving through this habitat are too great, so deer seek areas with high crown closure that have shallower snowpacks but less ground forage. Therefore, deer must have access to various habitats to respond to changing winter conditions. The condition of deer will suffer if they must travel over a large area to find these habitats or if travel through low crown closure habitat is required during periods of deep snow.

POOR SPATIAL ARRANGEMENT OF HABITAT TYPES

- all habitat types not easily accessible from any location
- small amount of edge
GOOD SPATIAL ARRANGEMENT
OF HABITAT TYPES

- all habitat types readily accessible from any other type
- large amount of edge
Snowpack Zones

Depth of snowpack is a major factor affecting mule deer habitat requirements during winter. Therefore, as a basis for tailoring habitat management to various snowpack conditions, the winter ranges in the Cariboo Forest Region can be categorized into one of four snowpack zones. These zones are delineated on the basis of biogeoclimatic subzones. To identify the snowpack zone in which a particular winter range is located, the biogeoclimatic subzone in which it is located must first be determined (see draft map of the Biogeoclimatic Units of the Cariboo Forest Region, 1986 edition). The table below shows the corresponding snowpack zone.

<table>
<thead>
<tr>
<th>SNOWPACK ZONE</th>
<th>MEAN ANNUAL SNOWFALL (cm)</th>
<th>BIOGEOCLIMATIC SUBZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>100</td>
<td>PPBGe, PPBGg, IDF* a</td>
</tr>
<tr>
<td>Moderate</td>
<td>100-150</td>
<td>IDF* b, SBSa, SBSi</td>
</tr>
<tr>
<td>Deep</td>
<td>150-200</td>
<td>SBSb, SBSk, SBSc, SBSm, IDFj, MS, MSc, MSd, ESSFg, ESSFf</td>
</tr>
<tr>
<td>Very Deep*</td>
<td>>200</td>
<td>ICHe, ICHh, ICHm, SBSe, SBSj, ESSFe, ESSF*h</td>
</tr>
</tbody>
</table>

* This handbook does not address the few winter ranges in this snowpack zone.
SNOWPACK ZONES IN THE CARIBOO FOREST REGION

SHALLOW DEEP
MODERATE VERY DEEP
Snowpack Alters Habitat Proportions

Winter ranges occurring in each snowpack zone differ in the amount of each type of winter range habitat that is required to provide the winter needs of deer. For example, if a winter range is located in the high snowpack zone it must have more high crown closure habitat than a winter range located in the low snowpack zone.
Just as the snowpack zones do not have absolutely discrete boundaries, so the proportions of each habitat type required on winter ranges in the three snowpack zones are also only approximate. However, they are valuable for management and therefore will be referred to in Part II.

PROPORTION OF EACH HABITAT TYPE REQUIRED ON WINTER RANGES OCCURRING IN THE THREE SNOWPACK ZONES

<table>
<thead>
<tr>
<th>Low Crown Closure Habitat</th>
<th>Moderate Crown Closure Habitat</th>
<th>High Crown Closure Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>~40%</td>
<td>~40%</td>
<td>~20%</td>
</tr>
<tr>
<td>~33%</td>
<td>~33%</td>
<td>~33%</td>
</tr>
<tr>
<td>~33%</td>
<td></td>
<td>~66%</td>
</tr>
</tbody>
</table>
Features of a Prime Mule Deer Winter Range

The habitat principles and winter range components already discussed are now combined and spatially organized to illustrate an entire winter range. Of course, prime winter ranges vary with the snowpack zone in which they occur, especially in the proportion of the habitat types comprising the winter range. The following figures illustrate a prime mule deer winter range in the moderate snowpack zone.

The value of a winter range is enhanced by the presence of adjacent spring range, as illustrated below.
1 Low Crown Closure
 Habitat
 • abundant
ground forage
 • little shelter
 value

2 Moderate Crown Closure
 Habitat
 • moderate
ground forage
 • good shelter
 value

3 High Crown Closure
 Habitat
 • scarce
ground forage
 • excellent
 shelter value

4 Spring Range
 • first available
 forage to
 green up in
 spring
FOREST MANAGEMENT PRINCIPLES FOR WINTER RANGE

While some timber management practices are compatible with the maintenance of mule deer winter range, others are not. For example, clearcut logging destroys winter range habitat, but low volume selective logging may have little impact. Juvenile spacing, properly applied, may in time enhance winter range values. This section describes forest management principles applicable to winter range once a decision has been made to harvest: that is, by adopting these principles, forest managers will be able to minimize the negative impact of timber extraction, maintain habitat values, or, in a few instances, enhance winter range values.

Selective Harvesting

A multi-layered, uneven-aged stand structure should be promoted and maintained if an area is to provide continuous winter range values through time. Therefore, each harvest must be selective, removing only a small volume (typically 10-20% of the gross merchantable volume). A small percentage volume removal is recommended rather than a fixed amount because the "bottom line" objective on winter range should be to minimize the negative impact of timber extraction in every stand regardless of present volume. When growth has replaced the harvested volume and the stand has recovered any winter range values which may have been lost, the second pass may be taken. The re-entry period will vary with sites, depending upon the growing conditions, the structure of the harvested stand, the type of winter range habitat desired, and the status of the surrounding area. This harvesting pattern will produce a series of small impacts on the winter range. In contrast, a single heavy cut, especially in the older age classes, would create a large negative impact that could last for a very long time.

As multiple re-entries take place over time, the trees on micro-habitats least important to deer, and those on micro-habitats valuable for ground forage production, may be harvested at silvicultural or economic maturity. However, the trees on micro-habitats (e.g., ridges) offering valuable litterfall forage and snow interception should be managed on an extended rotation basis (e.g., 200 years +) or not harvested at all, to maintain habitat quality. A significant component of over-mature trees must always be present.
RE-ENTRY PERIOD DEPENDS UPON

- Growing conditions
- Structure of the harvested stand
- Habitat type objectives
- Status of the surrounding area

Low Volume Selective Logging
Short Re-Entry Period

Low Volume Selective Logging
Long Re-Entry Period

TIME
Selectively Harvesting “Dry-Belt” Douglas-fir
(Biogeoclimatic Subzones PPBGe, IDFa, IDFb)

The age and size structure of “dry-belt” Douglas-fir stands is complex. Patches of timber with wide ranges of size merge into dense clumps of regeneration, which in turn are often found adjacent to small stands of mature timber with a closed canopy and no regeneration.

GENERALIZED STRUCTURE OF A DRY-BELT DOUGLAS-FIR STAND

DIAMETER DISTRIBUTION
Many dry-belt Douglas-fir stands have an uneven-aged stand structure that is compatible with mule deer winter habitat requirements. It offers good vertical diversity: mature crown closure for snow interception, old trees for litterfall forage, saplings for thermal and security cover, and small openings that promote shrubs for ground forage. Selective logging can perpetuate an uneven-aged stand if minimal damage occurs to the numerous trees left after harvesting.

AFTER SELECTIVE LOGGING TO PERPETUATE AN UNEVEN-AGED STAND IN DRY-BELT DOUGLAS-FIR

![Diameter Distribution Diagram]
Selectivity Harvesting “Transition-Belt” Douglas-fir (Biogeoclimatic Subzones IDF, SBSl, SBSk)

Typically, “transition-belt” Douglas-fir stands are simpler in structure than dry-belt fir stands. The canopy is more uniform with few dominant trees projecting beyond the main canopy of co-dominants. The regeneration and pole layers are scattered and often not well represented.

GENERALIZED STRUCTURE OF A TRANSITION-BELT DOUGLAS-FIR STAND

DIAMETER DISTRIBUTION

Numerous co-dominants
Some transition-belt Douglas-fir stands can be selectively logged to promote a more uneven-aged stand structure. Winter ranges in these biogeoclimatic subzones typically occur on the drier, warmer sites where uneven-aged management of Douglas-fir is silviculturally sound, through the application of light selective harvesting (10-15% of the gross merchantable volume). As with dry-belt Douglas-fir, the objective is to improve vertical diversity.
Silvicultural Treatments

Stand tending should be considered for mule deer winter ranges for two main reasons. First, it is often necessary to promote replacements for trees removed through harvesting. This can speed restoration of any lost winter range values and provide trees for future harvests. Second, properly applied silvicultural treatments can improve the long-term value of habitats that are currently of little use to deer.

Planting is usually not necessary in dry-belt Douglas-fir stands if the advanced regeneration is protected during the logging operation. However, dense clumps of regeneration are common in these stands. This clumping causes slow growth because the large numbers of trees must compete for water, light, and nutrients. Juvenile spacing can remedy the problem by removing undesirable trees within a young stand, allowing more moisture to reach the forest floor and giving sufficient space for the remaining trees to grow relatively free of competition.

Juvenile spacing is generally beneficial on mule deer winter range. Deer do not use dense clumps of regeneration extensively. Spacing concentrates growth on fewer stems, producing trees with wider and deeper crowns — the type most useful to deer. However, if slash from spacing is deep it physically restricts deer mobility. Extensive juvenile spacing can also increase air movement through the stand, reducing the thermal cover value. Both of these situations require specialized practices, which are described in Part II (pp. 94-95).
BENEFITS OF JUVENILE SPACING ON WINTER RANGE

- Increased growth rate for future harvests and mule deer habitat values.

- Growth concentrated on fewer stems, producing trees more valuable for deer and timber.

- Dense clumps of regeneration converted into more useful habitat, improving long-term habitat value for mule deer.
SUMMARY OF PART I

• Suitable winter range is essential to survival and reproduction because winter is the most critical season for mule deer.

• Winter range provides deer with food and shelter through a combination of topographic and vegetative factors.

• Each mule deer winter range must have basic types of habitat which are spatially arranged to provide ready access to food and shelter.

• The desirable proportion of these habitat types varies with the snowpack zone in which the winter range is located.

• Juvenile spacing and low volume selective harvesting to promote uneven-aged stands are key forestry practices applicable to winter range management.
PART II

MANAGING AND OPERATING ON WINTER RANGE
PART II

This is the “how to” part of the handbook. It brings together the principles detailed in Part I to show how winter range can be managed for deer and timber. It guides forest managers through a process for locating, evaluating, and determining management prescriptions for winter range. It also shows how those prescriptions can be applied on the ground by contractors. This process is a guideline only. It is designed to allow flexibility in dealing with specific management situations on winter range. Examples are provided to illustrate how the process can be used.

This part of the handbook is not intended to be used as the sole determinant of whether logging should proceed on any winter range. Managers should use the handbook within the broad context of interdisciplinary resource management.
DETAILED TABLE OF CONTENTS

LOCATING WINTER RANGE
- Actions 48
- Principles for Winter Range Boundary Location 50
- Example 53
- Results 54

EVALUATING WINTER RANGE
- Actions 56
- Current Status 58
- Examples 59
- Treatment Options 62
 - Open Stand 64
 - Dense Regeneration Stand 66
 - Dense Pole Layer Stand 68
 - All-Aged Stand 70
 - Dense Canopy Stand 72
- Examples 74
- Results 76

DETERMINING MANAGEMENT PRESCRIPTIONS FOR WINTER RANGE
- Actions 79
- Timing of Treatments 80
- Road Locations and Design 81
- Examples 82
- Results 84

HARVESTING AND SPACING ON WINTER RANGE
- Actions 86
- Principles for Harvesting 88
- Example 91
- Principles for Stand Protection 92
- Principles for Juvenile Spacing 94
- Results 96
LOCATING WINTER RANGE
LOCATING WINTER RANGE

The first question to answer when considering any harvesting in Douglas-fir is whether the area is on a winter range and, consequently, whether this handbook applies. Consultation with the regional Ministry of Environment, Fish and Wildlife, is important at this stage because staff there are best able to identify and locate mule deer winter range. This contact also provides the opportunity to discuss the priority given to the particular winter range in question. This has clear implications as to what might be done on the winter range. For example, a particular winter range may be so critical that any logging would significantly reduce winter range values.

As with many biological units, winter ranges are not completely distinct areas around which precise boundaries can be drawn by applying simple criteria. Yet, for management purposes the limits of individual winter ranges must be delineated. Because the limits of many winter ranges are not accurately shown on maps, this section presents the principles used to draw boundaries.

Actions

• Consult with regional Ministry of Environment, Fish and Wildlife, concerning their maps of mule deer winter ranges in the Cariboo.

• If the proposed harvesting area occurs on an identified winter range, check with regional Ministry of Environment, Fish and Wildlife, to see if any specific management plans, priorities, or agreements apply to the proposed area.

• If uncertainty exists over the boundaries of the winter range, regional Ministry of Environment, Fish and Wildlife, may use forest cover maps, topographic maps, aerial photographs, and ground checking to identify the boundaries. Principles are presented on the following pages to help forest managers understand how this is done.
Principles for Winter Range Boundary Location

The boundaries of individual winter ranges must be delineated to facilitate management. However, because winter ranges are complex biological units, a simple set of rules or criteria cannot be applied.

Presence or absence of deer or winter deer sign (i.e., tracks, pellet groups, browsing) must be used with caution when locating boundaries since the severity of winter conditions influences the selection of habitats used by mule deer. For example, during a severe winter the presence of deer or deer sign would suggest a smaller area than what the defined winter range actually covers (see p. 4). During a very mild winter, deer occupy an area larger than that of the defined winter range. Additionally, if the local deer population is at a very low density (e.g., through over-hunting, poaching, predation, etc.), inaccurate winter range boundaries would be drawn if winter deer sign were the only criterion used.

The following information will illustrate the habitat principles used to determine winter range boundaries. Each principle is presented individually, but as the example will illustrate, all should be considered collectively.
1. Douglas-fir is the dominant tree species on winter range in the Cariboo Forest Region. When the species changes (e.g., to lodgepole pine or spruce) it may indicate a winter range boundary. However, a species change must cover a substantial area and not just be a small, local change of stand type.

DOMINANT TREE SPECIES

```
<table>
<thead>
<tr>
<th>Winter Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas-fir</td>
</tr>
<tr>
<td>Lodgepole</td>
</tr>
<tr>
<td>Pine</td>
</tr>
<tr>
<td>Douglas-fir</td>
</tr>
<tr>
<td>Lodgepole</td>
</tr>
<tr>
<td>Pine</td>
</tr>
</tbody>
</table>
```

2. Good quality winter range should be associated with spring range. This boundary is often easy to define. In the shallow and moderate snowpack zones spring range often occurs on lower slopes or valley bottoms, where the forest gives way to grassland and scattered thickets of trees in the moisture-receiving sites. These grasslands may occur naturally or be the result of agricultural activity.

BOUNDARY WITH SPRING RANGE

```
<table>
<thead>
<tr>
<th>Spring Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Range</td>
</tr>
</tbody>
</table>
```

3. Winter ranges are typically located on general SE, S, SW, or W aspects. When the slope and aspect changes it may indicate a shift from winter range. For example, winter ranges are often associated with valleys and typically do not extend great distances onto the surrounding plateau.

However, it is important to remember that areas within a winter range can include all slopes and aspects. On some winter ranges the cooler aspects (NW, N, NE) provide the only areas of high crown closure habitat and therefore are very important.

TOPOGRAPHY

Winter Range

Winter Range
EXAMPLE

1. Dominant tree species shifts from Douglas-fir over an extensive area.

2. Boundary with spring range.

3. Topography becomes flat (shift to plateau).
Results

Having worked through this section the forest manager should know whether the proposed harvesting would occur on a winter range and whether this handbook applies. If a winter range is involved, discussions with Fish and Wildlife will help the forest manager decide whether or not to proceed beyond this step. To facilitate greater understanding, principles described show how winter range boundaries can be established. Once boundaries are identified, the manager should proceed to the evaluation stage.
LOCATING WINTER RANGE

EVALUATING WINTER RANGE
EVALUATING WINTER RANGE

Often much time and expense are incurred in formulating winter range harvesting plans that later require extensive revision or are not approved at all. A prior evaluation of winter range can reduce this problem by providing the forest manager with a basis for deciding if it is worth pursuing any harvesting activity, and thus if a formal plan should be developed. For example, evaluating stand treatment options will indicate the volume and size distribution of the harvest that are most likely to be approved in the various stand types occurring on winter range. As with the other stages, input in addition to that provided in this handbook is needed before the forest manager can decide whether to proceed with preparing a specific plan.

Actions

• Determine in which snowpack zone the winter range is located by checking pages 28 and 29.

• Evaluate the current status of the habitat types on the winter range as described on pages 24 and 25, using forest cover maps. Measure the proportion of each type, and compare them to the proportions shown on pages 30 and 31 (see the following pages for details).

• If the decision is to proceed, evaluate stand treatment options as presented on pages 62-73 to determine how much volume, and the size distribution of the volume, that may be approved for harvesting on the winter range.
Current Status

After the snowpack zone in which the winter range is located has been determined (by referring to p. 28), the current status of the habitat types on the winter range, particularly the proportions of each type, should be evaluated. Forest cover maps provide the primary source of this information. Forest cover polygons can be categorized into winter range habitat types by noting the crown closure class codes and meeting the height class code requirement (see pp. 24-25). Measure the proportions of each habitat type using a dot grid or some other method of calculating area. A comparison of the observed proportions to those on page 31 will help managers decide whether or not the evaluation should proceed. Three examples are presented to illustrate the process.

LEGEND FOR EXAMPLES

EXAMPLE OF A SIMPLIFIED FOREST COVER LABEL
(for details see legend on any new series forest cover map)

F - Species Composition
2 - Age Class Code
2 - Height Class Code
0 - Stocking Class Code
M - Site Class Code
3 - Crown Closure Class Code
0 - History Symbols and Codes

FOREST COVER POLYGON BOUNDARY
WINTER RANGE BOUNDARY ...

WINTER RANGE HABITAT TYPES

Low Crown Closure
Moderate Crown Closure
High Crown Closure
EXAMPLE: Winter Range “A”

CURRENT STATUS

- located in the moderate snowpack zone
- 65% Low Crown Closure Habitat
- 20% Moderate Crown Closure Habitat
- 15% High Crown Closure Habitat

CONCLUSIONS

- Winter range lacks sufficient Moderate and High Crown Closure Habitat for the moderate snowpack zone (p. 31).
- Do not proceed with the evaluation since any harvesting will negatively impact winter range values.
EXAMPLE: Winter Range “B”

CURRENT STATUS

- located in the moderate snowpack zone
- 20% Low Crown Closure Habitat
- 50% Moderate Crown Closure Habitat
- 30% High Crown Closure Habitat

CONCLUSIONS

- Winter range has abundant Moderate Crown Closure Habitat but could have more Low Crown Closure Habitat (p. 31).
- Selective harvesting of some Moderate Crown Closure Habitat to create more Low Crown Closure Habitat may be considered.
- Proceed with the evaluation.
EXAMPLE: Winter Range “C”

CURRENT STATUS

• located in the moderate snowpack zone
• 33% Low Crown Closure Habitat
• 33% Moderate Crown Closure Habitat
• 33% High Crown Closure Habitat

CONCLUSIONS

• All habitat types are present in the right proportions for a winter range within the moderate snowpack zone (p. 31).

• May consider light selective harvesting within, for example, Moderate Crown Closure Habitat, if enough trees are left after harvesting to still classify the habitat as moderate crown closure. (Note: taking all habitat types to their minimum crown closure values will negatively impact winter range values.)

• Proceed with the evaluation.
Treatment Options

If the evaluation of the current status of the winter range habitat types leads to the conclusion that the process should be continued, an evaluation of the treatment options should next be made. This evaluation will give the forest manager an indication of how much volume, and the size distribution of the volume, that may be approved for harvest from the winter range. It also shows the manager what silvicultural options are available.

Forest managers recognize a number of common stand types in interior Douglas-fir. Some of these are suitable winter range

<table>
<thead>
<tr>
<th>CHARACTERISTICS OF COMMON STAND TYPES</th>
<th>PRESENT VALUE AS WINTER RANGE HABITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OPEN</td>
<td>• some dominants</td>
</tr>
<tr>
<td></td>
<td>• some intermediates</td>
</tr>
<tr>
<td></td>
<td>• some regeneration</td>
</tr>
<tr>
<td>2 DENSE REGENERATION</td>
<td>• few dominants</td>
</tr>
<tr>
<td></td>
<td>• some intermediates</td>
</tr>
<tr>
<td></td>
<td>• dense regeneration</td>
</tr>
<tr>
<td>3 DENSE POLE LAYER</td>
<td>• scattered dominants</td>
</tr>
<tr>
<td></td>
<td>• dense pole layer</td>
</tr>
<tr>
<td></td>
<td>• little regeneration</td>
</tr>
<tr>
<td>4 ALL-AGED</td>
<td>• all size and age classes well represented</td>
</tr>
<tr>
<td>5 DENSE CANOPY</td>
<td>• many co-dominants</td>
</tr>
<tr>
<td></td>
<td>• few intermediates</td>
</tr>
<tr>
<td></td>
<td>• little regeneration</td>
</tr>
</tbody>
</table>
habitat, but others are not. Five common stand types are described below and their present value as winter range habitat is indicated.

These common stand types are discussed in detail in the next 10 pages. Stand characteristics are described, the present and potential value of each stand as winter range habitat are discussed, and the harvesting and silvicultural options, applicable to each stand type when it occurs on winter range, are outlined. A common harvesting and/or silvicultural treatment is presented as an example for each stand type.
Open Stand

Stand Characteristics

• typical crown closure 16-35%
• Crown Closure Class Codes 2, 3
• some dominants
• some intermediates
• some regeneration

Present Value and Potential as Winter Range Habitat

This stand type is ideal Low Crown Closure Habitat. The scattered clumps of older trees are valuable for security cover, while the open areas provide ground forage during periods with shallow or no snow accumulation. These stands often occur on warm, dry sites (often on steep south slopes) and therefore site conditions may not allow increased crown closure. Alternatively, they may be the result of past logging and, in time, could provide greater cover value.

Harvesting and Silviculture Option(s)

1) LIGHT SELECTIVE HARVESTING

• Low initial volume restricts options.
• Harvesting should only be considered if the crown closure is in the 30-35% area to avoid a decrease in habitat value (see example).
• If sufficient Moderate or High Crown Closure Habitats are lacking on the winter range, no logging should take place to allow the stand to increase crown closure (if site conditions make this possible).
EXAMPLE

BEFORE

ACTIONS

• Light selective harvest.
• Leave some larger trees to provide clumps of cover.

AFTER
Dense Regeneration Stand

Stand Characteristics

- typical crown closure 16-45%
- Crown Closure Class Codes 2, 3, 4
- few dominants
- some intermediates
- extensive dense regeneration

Present Value and Potential as Winter Range Habitat

The dense regeneration is of very limited value to deer, making the stand poor Low Crown Closure Habitat. Juvenile spacing can increase the short-term value of the stand by encouraging ground forage development. Long-term benefits will occur as trees grow and provide better cover.

Harvesting and Silviculture Option(s)

1) JUVENILE SPACING

- Space the dense regeneration to give remaining trees room to grow (see example).
EXAMPLE

BEFORE

Number of stems

Diameter

ACTIONS

• Juvenile spacing (see pp. 94-95 for details).
• Lop and scatter the spacing debris to promote decomposition and reduce obstacles to deer movement.

AFTER

Spacing

Minimum merchantable diameter

Number of stems

Diameter
Dense Pole Layer Stand

Stand Characteristics

• typical crown closure 46-75%
• Crown Closure Class Codes 5, 6, 7
• scattered dominants
• extensive dense pole layer
• little regeneration

Present Value and Potential as Winter Range Habitat

The extensive pole layer lacks the litterfall and cover value of mature and over-mature trees, making the stand mediocre Moderate Crown Closure Habitat. Long-term benefits to habitat value would result if the pole layer were thinned. This would occur at the expense of a short-term reduction of snow interception ability.

Harvesting and Silviculture Options

1) LIGHT SELECTIVE LOGGING (10-20% gross merchantable volume)
 • Thin the extensive pole layer by selective logging (see example).

2) THINNING
 • This option is appropriate if the pole layer is not merchantable.
EXAMPLE

BEFORE

ACTIONS

• Light selective harvest concentrating on the pole layer.
• Harvest small groups of trees to promote an uneven-aged stand.

AFTER
All-Aged Stand

Stand Characteristics

• typical crown closure 46-75%
• Crown Closure Class Codes 5, 6, 7
• all size and age classes well represented

Present Value and Potential as Winter Range Habitat

The all-aged stand structure makes this type ideal Moderate or High Crown Closure Habitat, depending on the degree of crown closure. The younger age classes provide thermal and security cover; the older age classes offer excellent snow interception ability and a supply of litterfall forage. This ideal stand structure should be maintained.

Harvesting and Silviculture Options

1) LIGHT SELECTIVE LOGGING (10-20% gross merchantable volume)
 • Perpetuate the all-aged stand structure by harvesting in all merchantable age classes (see example).

2) MODERATE SELECTIVE LOGGING (20-30% gross merchantable volume)
 • This option should only be considered if the winter range has an excess of High and Moderate Crown Closure Habitat.
 • This level of cut will reduce crown closure to the level of Low-Moderate Crown Closure Habitat.
EXAMPLE

BEFORE

![Graph showing the relationship between diameter and number of stems.]

ACTIONS

• Light selective harvest in all merchantable size classes.
• Ensure that a good representation of the oldest age classes remains after logging.

AFTER

![Graph showing the relationship between diameter and number of stems, with an indication of minimum merchantable diameter and harvest.]
Dense Canopy Stand

Stand Characteristics

- typical crown closure 66-85%
- Crown Closure Class Codes 7, 8
- dense canopy of co-dominants
- few intermediates
- little regeneration

Present Value and Potential as Winter Range Habitat

The extensive canopy of older trees makes this stand type very effective at intercepting snow and therefore good High Crown Closure Habitat. A more uneven-aged stand structure would be beneficial to improve thermal and security cover if high crown closure is maintained for snow interception.

Harvesting and Silviculture Options

1) LIGHT SELECTIVE LOGGING (10-20% gross merchantable volume)
 - This option could promote an uneven-aged stand while maintaining a relatively high degree of crown closure (see example).

2) MODERATE SELECTIVE LOGGING (20-30% gross merchantable volume)
 - This option is possible only if the winter range has an excess of High Crown Closure Habitat (see p. 31).
EXAMPLE

BEFORE

ACTIONS
• Light selective harvest (15% gross merchantable volume) concentrating on the co-dominants.
• Harvest groups of trees to create small openings that encourage regeneration and ground forage.

AFTER
EXAMPLE: Winter Range “B”

TREATMENT OPTION

HARVESTING

• Part of this large area (1) of Moderate Crown Closure Habitat might be harvested to create more Low Crown Closure Habitat (see conclusions of the current status evaluation on p. 60).

• This stand (1) has a significant lodgepole pine component which is of little value to deer and might be harvested.

• The stand also has a well-defined pole layer with scattered dominants and intermediates, and therefore much of the harvest should come from the pole layer to promote an uneven-aged stand (p. 68).
EXAMPLE: Winter Range “C”

TREATMENT OPTIONS

HARVESTING

• The crown closure of this habitat type (1) is at the highest level for moderate crown closure (Crown Closure Class Code 6 = 56-65% crown closure), and therefore a light selective cut, reducing the crown closure by only a small amount, would result in a habitat type still classified as moderate (see conclusions of the current status evaluation on p. 61).

• This stand (1) is basically an all-aged type, and therefore harvesting should remove some trees from all merchantable size classes.

SPACING

• Aerial photos and ground checking showed this to be a dense regeneration stand (2) for which juvenile spacing should be considered.
Results

This section has provided the forest manager with input necessary for making an informed decision about whether to proceed to make a specific plan for harvesting on a winter range. It includes procedures for: determining in which snowpack zone the winter range is located; delineating the habitat types present on the winter range and measuring their proportions; assessing the stand types present on the winter range; and deciding what harvest and silviculture options might be applied to them. This information is essential for both decision making and determining management prescriptions — the next step in the process to gain approval to harvest on winter range.
LOCATING WINTER RANGE

EVALUATING WINTER RANGE

DETERMINING MANAGEMENT PRESCRIPTIONS
DETERMINING MANAGEMENT PRESCRIPTIONS FOR WINTER RANGE

This section describes how a proposal for timber harvesting on mule deer winter range can be made. The principles described in Part I are assembled to illustrate how they apply to operational planning. If the principles are followed carefully, fewer revisions to harvesting plans should be required, and the efficiency of the referral process enhanced.

Actions

- Plan the proposed harvesting and/or silvicultural treatments using the results of the evaluation section and applying the principles presented in Part I. In particular, consider the proportions and spatial arrangement of habitat types found on pages 26 and 31.

- For individual cutblocks specify the volume and size distribution of timber to be removed, using the stand treatment principles presented on pages 62 to 73.

- Propose road locations and the scheduling of the harvest according to the principles presented on the following pages.
Timing of Treatments

The timing of harvesting and, to a lesser extent, stand tending treatments, is important on winter range for two reasons.

First, if logging occurs in late winter or early spring, the fresh slash will attract the Douglas-fir bark beetle when they fly in spring and summer. Although beetles tend not to survive in slash, the surrounding trees are often attacked, particularly if they have been damaged during logging. This can result in the loss of valuable trees. Postponing the harvest until after the beetles fly gives the slash longer to dry and makes it less attractive to the beetle.

Second, harvesting can provide Douglas-fir foliage (the main component of the winter diet of mule deer) as a short-term supply of forage. If operations take place in the late autumn the slash is valuable to deer as forage during the early winter and perhaps longer.
Road Locations and Design

As described in Part I (p. 17), security cover along roads is particularly important in preventing high levels of harassment to deer. The location of roads also influences the harassment level that deer experience during winter. By not building main roads through winter ranges and by avoiding circle routes, managers can ensure harassment pressure is reduced.

Roads can be designed to minimize harassment, built with intersections as shown below.

LOCATION OF ROADS

DESIGN OF INTERSECTIONS
EXAMPLE: Winter Range “B”

MANAGEMENT PRESCRIPTIONS TO SUBMIT FOR APPROVAL

HARVESTING (Blocks 1 and 2)

• A light selective cut of 20% of the gross merchantable volume is proposed in each cutblock. This would produce approximately 12% more Low Crown Closure Habitat on the winter range and reduce the abundant Moderate Crown Closure Habitat by the same amount.

• Two smaller cutblocks are proposed instead of one large block to increase horizontal diversity and edge (p. 21).

• Harvesting would remove all merchantable pine and then concentrate on the pole layer of fir.

• Harvest is proposed for September (p. 80).

• Road layout is designed to minimize the negative impact to the winter range (p. 81).
EXAMPLE: Winter Range “C”

MANAGEMENT PRESCRIPTIONS TO SUBMIT FOR APPROVAL

HARVESTING (Block 1)

• A light selective cut of 15% of the gross merchantable volume is proposed in the cutblock.

• Harvesting would remove all merchantable pine and then remove some fir in all merchantable size classes.

• Harvesting is proposed for October or November (p. 80).

• Road layout is designed to minimize the negative impact to the winter range (p. 81).

SPACING (Block 2)

• Juvenile spacing of the dense regeneration in this stand is proposed according to the standards for winter range found on page 94.
Results

After working through this section and meeting the requirements of the management agencies for the specific type of plan being developed, the forest manager should be ready to submit the plan for approval. The care with which the principles of this handbook are applied should be reflected in the efficiency of the approval process. Once a plan for harvesting on winter range has been approved, the forest manager should be ready to go to the final stage: selecting a contractor to carry out the plan.
LOCATING WINTER RANGE

EVALUATING WINTER RANGE

DETERMINING MANAGEMENT PRESCRIPTIONS

HARVESTING AND SPACING
HARVESTING AND SPACING ON WINTER RANGE

At this stage the forest manager should have an approved cutting plan. This section describes the specific principles that the logger must follow to apply the system. Instruction is also included for juvenile spacing contractors. The principles apply to all harvesting and spacing that is done on mule deer winter range. However, any specifics as determined in the previous section and detailed on the cutting plan will have to be explained to the contractor.

Actions

• Use only contractors who have been trained in applying the handbook principles for operating on winter ranges.

• Ensure that all crew members are familiar with the principles for operating on winter ranges (found on pp. 88-93).

• Ensure that fallers are thoroughly familiar with the principles for timber harvesting (found on pp. 88-91).

• Explain to fallers the specific objectives in each cutblock, including volume to be cut and the size distribution of that volume.

• Inspect the operations to ensure that the objectives are being met.
Principles for Harvesting

Recommendations for harvesting in various stand types were presented on pages 64-73; however, there are certain principles that apply to harvesting in any stand type on a winter range. For example, the “faller’s selection” method should be used for harvesting (i.e., trained fallers decide which trees are cut) because it is more efficient than marking trees for harvest. Additional principles are presented individually, and then are combined in an example.

1. Low volume selective harvesting (typically 10-20% of the gross merchantable volume) should be used to minimize the impact on winter range habitat. Groups of trees should be harvested rather than uniformly thinned because the maintenance of clumps of cover trees is essential for effective snow interception. The faller’s selection method should be used for harvesting because it is more efficient than marking trees for harvest.

HARVEST SMALL GROUPS OF TREES
2. Single trees should be harvested when they are isolated from other cover trees. These trees are less important to deer because they are poor snow interceptors and are often difficult for deer to reach during times of deep snow accumulation.

SINGLE TREES ISOLATED FROM OTHER COVER TREES CAN BE HARVESTED

3a. Micro-habitats most important to deer should receive minimal disturbance (see pp. 22-23). Specifically, ridge tops and knolls should not be logged and warm, southerly aspects should be logged lightly or not at all.

3b. Conversely, less important micro-habitats can be logged more heavily, though typically only 10-20% of the stand volume should be cut. These less important habitats include gullies and cool, northerly aspects.

CONCENTRATE HARVEST IN GULLIES AND NORTHERLY ASPECTS WHILE LEAVING RIDGES
4. All lodgepole pine, spruce, balsam, and deciduous species may be harvested because they are of little value to deer on winter range.

ALL LODGEPOLE PINE, SPRUCE, AND DECIDUOUS TREES MAY BE HARVESTED

5. Damage to residuals and regeneration must be minimized to protect winter range values and future harvests. This includes logging with care and keeping skid trails and landings as narrow and small as possible. The use of small equipment for building skid trails and skidding is recommended (see the following pages for details).

MINIMIZE DAMAGE TO RESIDUALS AND REGENERATION
1 Harvest small groups of trees

2 Single trees isolated from other cover trees can be harvested

3a Leave ridges untouched

3b Concentrate harvest in gullies and northerly aspects

4 All lodgepole pine, spruce, and deciduous trees may be harvested

5 Minimize damage to residuals and regeneration
Principles for Stand Protection

Douglas-fir bark beetle is a major source of mortality in mature and over-mature fir stands. Each year a new brood of beetles fly and attack trees from mid-April to June, with a second smaller flight occurring in July and August. Trees weakened or damaged (including freshly felled trees) are most susceptible to attack, and poor logging practices can encourage the spread of the beetle. Because maintenance of mature and over-mature trees is of prime importance on a winter range, extra care must be taken to minimize mortality from the beetle. Ways of minimizing a beetle problem are explained below and illustrated in the facing diagram.

1. Slash must not be piled against trees. Douglas-fir beetles are attracted to slash, and will also attack standing trees next to it.

2. All slash over 20 centimetres in diameter should be removed because it attracts beetles.

3. Damage to residual trees should be minimized because beetles are attracted to damaged trees.

4. Severely scarred trees (i.e., over half of the circumference of the bole) should be removed.

5. Remove beetle attacked trees.

6. Slash piles should be burned before they become breeding grounds for more beetles.

7. Logging operations should be scheduled as long before the beetle flight as possible to allow the logging debris to dry. Late summer and fall are ideal.

If an area has a major beetle problem, a trap tree program may be necessary. This involves falling a number of trees shortly before the beetle flight. The beetles are attracted to these trees, which are removed and milled before the next flight, reducing the local beetle population.
1. Do not pile slash against trees
2. Remove all slash over 20 cm in diameter
3. Minimize damage to residual trees
4. Remove severely damaged trees
5. Remove beetle attacked trees
6. Burn slash piles promptly
7. Log in the fall if possible
Principles for Juvenile Spacing

The benefits of juvenile spacing on winter range were described in Part I (pp. 40-41). These are basically long-term benefits that occur as the spaced trees respond to the reduced competition. However, in the short term, measures must be taken to minimize any negative impact to deer caused by juvenile spacing. These are discussed below and illustrated in an example.

1. Main trails are important to deer as they move about to find suitable forage and shelter. These trails should not be obstructed by spacing slash.

2. The deeper the slash, the greater the obstacle to deer. When slash is 75-100 centimetres deep, the physical obstruction excludes deer from the area. Parallel falling, lopping, and limbing of the larger stems can reduce slash depth.

3. Spacing a large area that has little topographic relief will increase the air movement through the stand, thereby reducing the thermal cover value. Spacing also increases sight distances, causing a decline in security cover. Therefore, large spaced areas should be broken by barriers (i.e., trees and/or topography) to wind and vision.

4. Security cover along roads is important (p. 17). Leave an unspaced strip at least 10 metres wide along roads.
1. Leave main deer trails unobstructed

2. Reduce the slash profile by parallel falling, lopping, and limbing of larger stems

3. Leave barriers to wind and vision in large spaced areas

4. Leave at least a 10 metre unspaced strip along roads
Results

By applying the handbook principles, obtaining the necessary inputs from the resource agencies, and using a properly instructed and conscientious contractor, the result should be a winter range on which mule deer habitat values have been maintained, or minimally affected, while valuable timber has been extracted.

The harvesting system described in this handbook is applicable to those winter ranges or parts of winter ranges where the approval has been given to harvest timber. If the system is properly applied and sufficient time is allowed between passes (e.g., 20-30 yr), it should be possible to extract timber periodically without significantly harming mule deer habitat values.
INDEX

Aspect
 importance to deer, 12, 13
 logging, 89, 91

Balsam (True fir), 90

Biogeoclimatic Units, 28

Deciduous Species, 90, 91

Diversity
 horizontal, 21, 82
 vertical, 20

Douglas-fir
 dry-belt, 36, 37
 forage, 18-22, 25, 26, 33, 62, 66, 70
 regeneration, 23, 36, 38, 40, 41, 62, 90, 91
 snow interception, 14, 15
 stand types, 62-73
 timber supply, v
 transition-belt, 38, 39

Edge, 20, 21, 82

Forage
 ground, 18, 21
 litterfall, 18, 19, 23

Forest Management
 uneven-aged, 20, 34, 37, 39, 72, 74

Habitat Types
 description, 24, 25
 snowpack alters proportions, 30, 31
 spatial arrangements, 26, 27

Lodgepole Pine, 14, 51, 82, 83, 90, 91

Micro-Habitat
 importance to deer, 22-24
 relationship to logging, 88-91

Mule Deer
 condition, 6-11
 factors influencing, 10
 winter sign, 50

Protection
 Douglas-fir bark beetle, 92
 regeneration, 40, 90

Selective Harvesting
 dry-belt, 36, 37, 40
 fellers selection method, 88
 light, 61, 64, 65, 68-73, 82, 83
 moderate, 70, 72
 re-entry period, 34, 85
 skid trails, 90
 timing, 80
 transition-belt, 38, 39

Shelter
 security cover, 10, 17, 21, 37, 64, 70, 72, 94
 snow interception cover, 10, 14, 21
 thermal cover, 10, 14, 16, 17, 20, 21, 37, 70, 72

Silviculture
 juvenile spacing, 40, 42, 66, 67, 75
 benefits, 41
 principles, 94
 thinning, 88

Slope, 12

Snow
 influence of, 11
 interception, 14, 15, 20, 22, 23, 25, 68, 70, 72, 88
 snowpack zones, 28-31, 57-61

Spring Range, 6, 32, 33, 51, 53

Spruce, 51, 90, 91

Roads
 design of intersections, 81
 location, 81-83

Woodlot Licensees, viii

Winter Range
 definition, 4
 features of a prime, 32, 33
 how functions, 8, 9
 locating boundaries, 49-53
 why required, 6, 7

97
WE WELCOME YOUR COMMENTS

The relationships and management recommendations presented in this handbook were derived from ongoing research and represent the best available and most current data. As research increases our level of understanding, parts of the handbook may have to be revised.

Extensive effort has gone into making the handbook practical to all user groups, but undoubtedly as it is used operationally its strengths and weaknesses will become apparent. Comments from you, the users, will provide valuable insight not only to future editions but also to related projects.

Please direct all comments to:

Harold Armleder
Wildlife Habitat Research
Cariboo Forest Region
Ministry of Forests
540 Borland Street
Williams Lake, B.C.
V2G 1R8
398-4407