Abstract

Growth intercept models relate site index to early tree height growth. To develop this model for lodgepole pine (Pinus contorta var. latifolia), 45 stem-analysis plots were sampled in northern British Columbia and another 45 plots were sampled in southern British Columbia. Tests were performed to detect differences in the site index–growth intercept relationship between the northern and southern plots. No practical differences were found, therefore one model suffices for both regions. This model should replace the existing model for lodgepole pine because it is more widely applicable in British Columbia.

Introduction

Growth intercept models relate site index to the early height growth of trees on the site, and therefore allow site index to be estimated from height growth. A growth intercept model has been developed for lodgepole pine in British Columbia (Nigh 1995a) using data from the northern part of the province. Another stem-analysis data set was collected in south-central British Columbia. This presented an opportunity to test for differences in the site index–growth intercept relationship for lodgepole pine growing in geographically distinct regions of the province, and to develop a growth intercept model that is more widely applicable across British Columbia.

Data

The data consist of 90 stem-analysis plots, 45 of which were collected in the Lakes, Prince George, and Quesnel forest districts (Nigh 1995a) and 45 in the Clearwater, Kamloops, Merritt, and Penticton forest districts. I refer to the former data set as the northern data and the latter as the southern data. The northern and southern sample plots were 0.03 ha and 0.0363 ha, respectively; three trees were selected from each plot. The different plot sizes were caused by a change in stem-analysis standards. The trees in the northern plots were stem analyzed by cutting the tree into 10 sections and obtaining ring counts for each section. The height–ring count data were converted into height–age data as discussed by Nigh (1995b) for breast height ages 0–50. In the southern plots, the height of the trees at breast height ages 0–50 were obtained by identifying and measuring the height of the annual branch whorls. In both
cases, the tree heights of the three sample trees were averaged by breast height age to give top height by breast height age for each plot. The growth intercept and site index were then calculated using equations 1 and 2, respectively.

\[
GI_{i,A} = \frac{H_{i,A} - \frac{1.3}{A - P_i}}{A - P_i} \times 100, \quad (1)
\]

\[
SI_i = H_{i,50}, \quad (2)
\]

where:

- \(GI_{i,A} \) = growth intercept (cm/yr) for plot \(i \) at breast height age \(A \),
- \(H_{i,A} \) = top height (m) of plot \(i \) at breast height age \(A \),
- \(A \) = breast height age (years),
- \(P_i \) = proportion of growth between breast height ages 0 and 1 that occurred below breast height for plot \(i \), and
- \(SI_i \) = site index (m) of plot \(i \).

Methods

The data analysis proceeded in a manner similar to that described in Nigh (1997). The major exception is in the testing for differences between the northern and southern regions. This was done using indicator variables in the growth intercept model (equation 3).

\[
SI_i = 1.3 + e^{b_0 + b_1 R} \times GI_{i,A} + b_2 R + E_i \quad (3)
\]

where:

- \(R = 1 \) if plot \(i \) is from the northern region,
- \(R = 0 \) if plot \(i \) is from the southern region,
- \(b_0, b_1, b_2, b_3 \) are model parameters; and
- \(E_i \) = error term for plot \(i \).

This model was fitted to the data using nonlinear least-squares regression. If any parameters were not significant, then the least significant parameter was deleted and the regression was redone. This process continued until all remaining parameters were significant. The fitting was done for each breast height age between 1 and 50, resulting in 50 models. Tests were performed on each final model to ensure that the standard regression assumptions (Sen and Srivastava 1990) were met and that the model behaved close-to-linearly (Ratkowsky 1983). Residual plots also helped to assess the model assumptions.

Results

The analyses of the models indicated that no differences in the site index–growth intercept relationships existed between the northern and southern regions, except possibly for breast height ages 1, 4–9, and 50. Therefore, only one set of models is required for both regions; that is, model (3) above with parameters \(b_1 \) and \(b_3 \) removed from the equation. Table 1 gives the simplified versions of the models and their root mean square error, which is a measure of model accuracy. Tests indicate that the models are unbiased. The residuals are, for most models, normally distributed and homoscedastic. I concluded that the regression assumptions were satisfactorily met, although some tests indicated that the residuals were not normally distributed or homoscedastic. With so many tests, some will indicate non-normality/heteroscedasticity even when the residuals are normally distributed/homoscedastic. As well, the graphical analysis showed that the violations of the normality and homoscedastic assumptions were not serious. Tests for nonlinearity showed that the models behaved in a close-to-linear fashion.
<table>
<thead>
<tr>
<th>Age<sup>a</sup></th>
<th>Model</th>
<th>RMSE<sup>b</sup></th>
<th>Age<sup>a</sup></th>
<th>Model</th>
<th>RMSE<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\hat{h} = 1.3 + 3.229 \times GT_{1}^{0.4774}$</td>
<td>1.900</td>
<td>26</td>
<td>$\hat{h} = 1.3 + 0.9590 \times GT_{26}^{0.7817}$</td>
<td>0.9460</td>
</tr>
<tr>
<td>2</td>
<td>$\hat{h} = 1.3 + 2.726 \times GT_{1}^{0.5081}$</td>
<td>1.820</td>
<td>27</td>
<td>$\hat{h} = 1.3 + 0.9167 \times GT_{27}^{0.7950}$</td>
<td>0.9200</td>
</tr>
<tr>
<td>3</td>
<td>$\hat{h} = 1.3 + 2.671 \times GT_{3}^{0.5095}$</td>
<td>1.781</td>
<td>28</td>
<td>$\hat{h} = 1.3 + 0.8712 \times GT_{28}^{0.8099}$</td>
<td>0.8821</td>
</tr>
<tr>
<td>4</td>
<td>$\hat{h} = 1.3 + 2.472 \times GT_{4}^{0.5272}$</td>
<td>1.724</td>
<td>29</td>
<td>$\hat{h} = 1.3 + 0.8356 \times GT_{29}^{0.8226}$</td>
<td>0.8551</td>
</tr>
<tr>
<td>5</td>
<td>$\hat{h} = 1.3 + 2.353 \times GT_{5}^{0.5376}$</td>
<td>1.649</td>
<td>30</td>
<td>$\hat{h} = 1.3 + 0.8005 \times GT_{30}^{0.8354}$</td>
<td>0.8224</td>
</tr>
<tr>
<td>6</td>
<td>$\hat{h} = 1.3 + 2.369 \times GT_{6}^{0.5340}$</td>
<td>1.640</td>
<td>31</td>
<td>$\hat{h} = 1.3 + 0.7801 \times GT_{31}^{0.8437}$</td>
<td>0.7925</td>
</tr>
<tr>
<td>7</td>
<td>$\hat{h} = 1.3 + 2.287 \times GT_{7}^{0.5419}$</td>
<td>1.590</td>
<td>32</td>
<td>$\hat{h} = 1.3 + 0.7557 \times GT_{32}^{0.8536}$</td>
<td>0.7572</td>
</tr>
<tr>
<td>8</td>
<td>$\hat{h} = 1.3 + 2.130 \times GT_{8}^{0.5598}$</td>
<td>1.539</td>
<td>33</td>
<td>$\hat{h} = 1.3 + 0.7238 \times GT_{33}^{0.8666}$</td>
<td>0.7057</td>
</tr>
<tr>
<td>9</td>
<td>$\hat{h} = 1.3 + 2.022 \times GT_{9}^{0.5736}$</td>
<td>1.500</td>
<td>34</td>
<td>$\hat{h} = 1.3 + 0.7019 \times GT_{34}^{0.8764}$</td>
<td>0.6667</td>
</tr>
<tr>
<td>10</td>
<td>$\hat{h} = 1.3 + 1.923 \times GT_{10}^{0.5865}$</td>
<td>1.447</td>
<td>35</td>
<td>$\hat{h} = 1.3 + 0.6859 \times GT_{35}^{0.8842}$</td>
<td>0.6380</td>
</tr>
<tr>
<td>11</td>
<td>$\hat{h} = 1.3 + 1.797 \times GT_{11}^{0.6042}$</td>
<td>1.381</td>
<td>36</td>
<td>$\hat{h} = 1.3 + 0.6667 \times GT_{36}^{0.8935}$</td>
<td>0.6103</td>
</tr>
<tr>
<td>12</td>
<td>$\hat{h} = 1.3 + 1.724 \times GT_{12}^{0.6154}$</td>
<td>1.314</td>
<td>37</td>
<td>$\hat{h} = 1.3 + 0.6467 \times GT_{37}^{0.9033}$</td>
<td>0.5695</td>
</tr>
<tr>
<td>13</td>
<td>$\hat{h} = 1.3 + 1.663 \times GT_{13}^{0.6253}$</td>
<td>1.273</td>
<td>38</td>
<td>$\hat{h} = 1.3 + 0.6289 \times GT_{38}^{0.9125}$</td>
<td>0.5267</td>
</tr>
<tr>
<td>14</td>
<td>$\hat{h} = 1.3 + 1.582 \times GT_{14}^{0.6390}$</td>
<td>1.244</td>
<td>39</td>
<td>$\hat{h} = 1.3 + 0.6147 \times GT_{39}^{0.9205}$</td>
<td>0.4897</td>
</tr>
<tr>
<td>15</td>
<td>$\hat{h} = 1.3 + 1.530 \times GT_{15}^{0.6485}$</td>
<td>1.213</td>
<td>40</td>
<td>$\hat{h} = 1.3 + 0.6009 \times GT_{40}^{0.9283}$</td>
<td>0.4491</td>
</tr>
<tr>
<td>16</td>
<td>$\hat{h} = 1.3 + 1.466 \times GT_{16}^{0.6602}$</td>
<td>1.184</td>
<td>41</td>
<td>$\hat{h} = 1.3 + 0.5852 \times GT_{41}^{0.9373}$</td>
<td>0.4167</td>
</tr>
<tr>
<td>17</td>
<td>$\hat{h} = 1.3 + 1.393 \times GT_{17}^{0.6744}$</td>
<td>1.156</td>
<td>42</td>
<td>$\hat{h} = 1.3 + 0.5731 \times GT_{42}^{0.9448}$</td>
<td>0.3789</td>
</tr>
<tr>
<td>18</td>
<td>$\hat{h} = 1.3 + 1.327 \times GT_{18}^{0.6881}$</td>
<td>1.133</td>
<td>43</td>
<td>$\hat{h} = 1.3 + 0.5592 \times GT_{43}^{0.9534}$</td>
<td>0.3430</td>
</tr>
<tr>
<td>19</td>
<td>$\hat{h} = 1.3 + 1.271 \times GT_{19}^{0.6998}$</td>
<td>1.126</td>
<td>44</td>
<td>$\hat{h} = 1.3 + 0.5455 \times GT_{44}^{0.9621}$</td>
<td>0.2968</td>
</tr>
<tr>
<td>20</td>
<td>$\hat{h} = 1.3 + 1.216 \times GT_{20}^{0.7123}$</td>
<td>1.109</td>
<td>45</td>
<td>$\hat{h} = 1.3 + 0.5350 \times GT_{45}^{0.9693}$</td>
<td>0.2564</td>
</tr>
<tr>
<td>21</td>
<td>$\hat{h} = 1.3 + 1.167 \times GT_{21}^{0.7240}$</td>
<td>1.086</td>
<td>46</td>
<td>$\hat{h} = 1.3 + 0.5236 \times GT_{46}^{0.9769}$</td>
<td>0.2150</td>
</tr>
<tr>
<td>22</td>
<td>$\hat{h} = 1.3 + 1.122 \times GT_{22}^{0.7355}$</td>
<td>1.054</td>
<td>47</td>
<td>$\hat{h} = 1.3 + 0.5152 \times GT_{47}^{0.9833}$</td>
<td>0.1693</td>
</tr>
<tr>
<td>23</td>
<td>$\hat{h} = 1.3 + 1.079 \times GT_{23}^{0.7469}$</td>
<td>1.033</td>
<td>48</td>
<td>$\hat{h} = 1.3 + 0.5075 \times GT_{48}^{0.9895}$</td>
<td>0.1220</td>
</tr>
<tr>
<td>24</td>
<td>$\hat{h} = 1.3 + 1.045 \times GT_{24}^{0.7567}$</td>
<td>1.015</td>
<td>49</td>
<td>$\hat{h} = 1.3 + 0.4986 \times GT_{49}^{0.9963}$</td>
<td>0.07291</td>
</tr>
<tr>
<td>25</td>
<td>$\hat{h} = 1.3 + 1.002 \times GT_{25}^{0.7687}$</td>
<td>0.9861</td>
<td>50</td>
<td>$\hat{h} = 1.3 + 0.4924 \times GT_{50}^{1.002}$</td>
<td>0.04916</td>
</tr>
</tbody>
</table>

^a Age at breast height age = number of annual growth rings at breast height.

^b RMSE = root mean square error.
Discussion and Conclusion

One of the most important results that arose from this work is the closeness in the site index–growth intercept relationship between northern and southern sites. For most of the models, no statistically significant difference existed in this relationship. This is illustrated in the site index–growth intercept relationship for breast height age 10 (Figure 1), where the northern and southern data points have the same scatter around the fitted model. For models that were significantly different, the largest difference in estimated site index over a growth intercept range of 0–80 cm/yr is under 1 m. This comparison involved the final formulated models and the individual models for the northern and southern regions. Therefore, the difference is not a practical concern. Furthermore, any difference between the regions would most likely manifest itself across the whole range of breast height ages, or at least a large part of the range. As this was not the case here, the apparent difference is most likely an abnormal characteristic of the data.

The model for breast height age 50 does not give exact estimates of site index. Site index is top height at breast height age 50; therefore, if a top height is entered into the model for breast height age 50, the resulting site index estimate should be the same as the top height figure entered. However, this is not the case. This anomaly results

Figure 1 Site index–growth intercept relationship for breast height age 10 for the northern region (•), southern region (○), and the fitted model (---).
| Age (yrs) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| Site index (m at bha 50) |
| Age at breast height = number of annual growth rings at breast height. |
when the assumption that 50-year-old
trees have 49.5 years of height growth
above breast height is not met in the
model development data. This slight
deviation causes the breast height age
50 model to give inexact site index es-
timates. The resulting lack of
precision should not, however, cause
practical concerns.

Revised variable growth intercept
models are now available for lodge-
pole pine. Table 2 shows the
estimated site index from total tree
height and breast height age. These
models should replace the previous
models because they are developed
with data that covers a much wider
geographic range. The revised growth
intercept model should be used for
interior lodgepole pine across British
Columbia.

Literature Cited

Nigh, G.D. 1995a. Variable growth
intercept models for lodgepole pine
in the Sub-Boreal Spruce biogeocli-
matic zone, British Columbia. Res.
Br., B.C. Min. For. Victoria, B.C.

_____. 1995b. Compatibility im-
provements and bias reduction in
height-age models. Res. Br., B.C.
No. 03.

_____. 1997. A growth intercept
Br., B.C. Min. For. Victoria, B.C.,

Ratkowsky, D.A. 1983. Nonlinear re-
gression modeling. Marcel Dekker,

Regression analysis theory, meth-
ods, and applications. Springer-
Verlag, New York, N.Y. 347 p.