SX 82211 Q

FALL SOWING TRIAL

INTERIM REPORT

R.G. Matthews 1983
REPORT SX 82211Q

INTERIM ☒

FINAL ☐

DATE March 22/83

TITLE Fall Sowing Trial

Report prepared by: 

R.G. Matthews (Typed)

Report & Distribution approved by: 

(Typed)

(Signature) (for Regions - Silviculture Office)

(a) Wide Distribution ☐

(b) Limited ☒

(i) Internal - Branch only ☒

(ii) External - Designated ☐

(iii) Ministry only ☐

COPIES TO

Approved:

Manager - (Signature) (for Regions - Forestry Manager) (Typed)
Interim Report
SX 82217Q
Fall Sowing Trial

Objective

To explore crop rotations which will produce 2 spruce crops annually in greenhouse-compound facilities, one for spring planting and one for summer planting in Prince George Region. To produce hemlock crops for fall planting which are fully mature and conditioned.

Experimental Design

Several blocks of hemlock S/L 3027 and spruce 4186 were sown at Green Timbers on August 23, 1982. The prescribed sowing date was Aug. 1, but strike action delayed sowing. After germination and initial growth, these crops were overwintered in unheated greenhouses. The hemlock was moved into greenhouse 7 in March and flushed along with 1983 fall hemlock producton. The spruce was moved outdoors in late February. Photoperiod lights were applied to the spruce in mid-March.

Results

Attached are heights and dry weights achieved due to growth in 1982. After moving to greenhouse 7, the hemlock flushed vigorously and uniformly and is now considerably ahead of standard fall hemlock crops.

After being moved outside in late February, the spruce began to flush rather erratically, without the aid of photoperiod lights. Photoperiod lights are on now and flushing is progressing.

Conclusions

Hemlock sowing dates appear to be close to optimal. There should be sufficient time to condition this stock by long nights and full light prior to planting in late summer. H. Hahn is interested in planting this stock and observing field results.

Spruce sowing for the proposed rotation may have to be considerably earlier (July 1?) if the second part of the rotation is to be in unshaded compounds. Observations of this stock will continue.

G. Matthews
<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>Ave. Ht</th>
<th>mm RCD</th>
<th>g TW</th>
<th>g RW</th>
<th>g W</th>
<th>T/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hw 3021</td>
<td>PSB 211</td>
<td>Osm.</td>
<td>2.31</td>
<td>.56</td>
<td>.21</td>
<td>.07</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Osm.</td>
<td>1.97</td>
<td>.50</td>
<td>.17</td>
<td>.07</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>PSB 313</td>
<td>Osm.</td>
<td>2.42</td>
<td>.54</td>
<td>.16</td>
<td>.08</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Osm.</td>
<td>2.04</td>
<td>.53</td>
<td>.16</td>
<td>.08</td>
<td>.24</td>
</tr>
<tr>
<td>Si 4186</td>
<td>PSB 211</td>
<td>Osm.</td>
<td>2.09</td>
<td>.48</td>
<td>.16</td>
<td>.07</td>
<td>.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Osm.</td>
<td>1.9</td>
<td>.48</td>
<td>.24</td>
<td>.1</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td>PSB 313</td>
<td>Osm.</td>
<td>2.3</td>
<td>.51</td>
<td>.21</td>
<td>.06</td>
<td>.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Osm.</td>
<td>1.8</td>
<td>.47</td>
<td>.22</td>
<td>.07</td>
<td>.29</td>
</tr>
</tbody>
</table>